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THE PROPAGATION OF ERRORS, FLUCTUATIONS AND TOLERANCES 

BASIC GENERALIZED FORMULAS 

ABSTRACT 

The classical formLas for the "propagation of error" 

permit the approximate calculation of the variance of a function 

of variables whose variability is known.  The adequacy of its 

approximation has often been doubted.  Generalized formulas are 

here obtained, not only for average values and variances, but 

also for the next two cumolants. 

The classical formula turns out to be better than expected 

-- and further approximations can be confuted when necessary. 

Expressing the individual variables in well chosen terms 

sinplifies the generalized formulas and incresases the accuracy of 

the classical one. 

Higher cocumulants are introduced to aid the algebraic 

work of derivation. 
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Abstract - 2 

The classical foimüa for tne "propagation of error", 

where y « r{Kr  x2, ..., x^),  &n^  the xa suffer independent 

errors or fluctuations. Is 

var y ^ s (|? .) var x = 2 f 2 var x 
0' i o     a    a     a 

where the subscript o means ^hat x^ x2, .., xk are at their 

average values and where we ha -e written fa for the value of the 

a-th partial derivative at this werage point. If the errors or 

fluctuations are correlated/ this generalizes to 

-u „,äf 2 

where 2* indicates summation over all distinct terms with ap- 

parently different subscripts actually different.  (See Sec- 

tion 38 for further details). These fomulas ^re exact when y 

is a linear function of the x«s. 

o  al *l ^ a2 x2 + * * * + ak ^ 

and inexact otherwise. They have frequently been used for pre- 

dicting the variation in a response y due to errors or to within- 

tolerance fluctuations in the x's. There has been a tendency to 

regard their use with suspicion because of this inexactness. There 

has been no indication of the extent of inaccuracy to hold this 

suspicion in proper check. 
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SIM present nemomnduin develops fonnulas, formally cor- 

rect through teims of order (r% for the average ya3ue of y, its 

variance, and its next two higher cumulants. The most important 

cpnclualon ia that the classical propagation formula is much better 

than seems to be usually realized. Examples indicate that it is 

quite lively to suffice for most work. The generalised fonnulas 

allow us (i) to check the accuracy of the classical foimula, and 

(11) to obtain much more accurate results in tue few cases where 

they may be needed. 

While the classical formula is often quite accurate 

whan used in the terms in which the problem originally appears, it 

is often possible to Improve its accuracy by a better choice of 

terras. If each of the individual or component variables x,, x , 

..., xk is expressed in terns of its partial effect on the res- 

ponse, or in such terns that its partial effect is linear, we' 

shall say that the terms are well-chosen. Unless the design value 

of one or more x's has been chosen to make y a maximum or a mini- 

mum, it will usually be possible and practical to use well-chosen 

terms. In treating the delay time of a delay line made up of LC- 

sectlons, for example, we are led to express component variables 

in terms of ..the square-root of inductance or the square-root of 

capacitance.  In treating the attenuation of a 7r-section attenuator, 

for further example, we are led to specify the shunt elements in 

terms of their conductances and the series element in terns of its 

resistance. 
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zonvenlmtly and äijrmmionl*Bmlj by 

ave fxa - x P 
y   •  I,, i !.,... ._ , JB   & 

tave {xa - xa)
a]V2 

Using 2« again to indicate a-inmatlon over all distinct tenna 

with apparently different aubacrlpta actually different, uelng 

7a and Ba to describe the distribution of the a-th Individual 

variable, and abbreviating the various partial derivatives of f 

evaluated «hen %.  ^ ^ are each at ltg ^^  ^^ ^ 

illustrated by 

f     - L   a3f     ^ aab  (3^ <b£ Sad") a11 x,ß at average values, 

we can write that propagation fonnula for the variance which 

applies when (l) fluctuations in the various xa are independent, 

and (ii) the xa hav6 been expressed as to make partial effects 

linear quite simply as follows.« 

var y * 2 f 2 a 2 a va 

+ 2*(Wb + ^ -Va^'a^1 

1 2*(i Vaabb- fab faab + ^ faa&bfb )y^^ 

+ tenna of order > a 6 
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? 

Varlaiö aiptct» cf 1**3 f^.* •,._. !..-äcr-.'.;- wij.tiw;.: 

(1) me« Is no tsms of orüme #, ITudsr cmr as«»«)- 

tiPtis tit« first consistI011 t#Ä- is two örsi#r» Jil^*er than the 

leiding tnm.*    Thus the leading ten.-, does bstter the^ we might 

expect, 

(2) Ihe first correction term liwolvee both iecond 

(^b^ ^i^ «hird (faab and fabb) derivatives on an equal footing 

and with equa;. coefficients. If we are to go beyond first deriva- 

tives, we should go to the third derivatives, 

(3) Through terms in <r, which Is usually further 

than we have any excuse to go, we need only the values of the 

a   and the 7 . Fewer quantities enter than we might fear, 
a. a 

i4) Much, but not all, of this simplicity comes from 

eaqpressuv; the individual variables in proper terms. The general 

formula would have 8 terms Instead of 3, Correct choice of tems 

is very helpful but not essential. 

The parallel formula for the average is 

ave y = y^ 

S#(^ 
2_ 2 

aabb K % 
' 0. + 2*(fe faaabb^aV\2 

+ terms of order > 0 , 

Analogous formulas for the third and fourth cumulants are given 

in the body of the memorandum.  (Table 1, page II-6). 
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aoweatlofi tt». in ttm  .'^fi...i5# ^^n y*« fey eliÄii^tiif to© teraj 

in which the  rtapont® la e3qpr#sa«4»  i.-, ths ejcamples cittd fchis 

laads to multiples of (i) the  ey*»e of a conitant leas ito@ delay 

time and (11) the cube root of tie attenuation plus a constant.) 

While the possible advantages descnrs being kept in mind, the 

first correction term is usually small enough so that this re- 

finement is unnecessary,  (The general question of simplifications 

is discussed in Section 9»  pages II, 9-11.) 

If the Individual variables are not necessarily ex- 

pressed so as to make f „, f Q . etc. vanish, but do have inde- 

pendent fluctuations, the propagation formulas are less simple, 

but can be expressed as in Table A, following.  (Similar for- 

mulas for propagation inc »> higher cumulants are given on page 

1-8.) These formulas require more information about the fluctua- 

tions of the individual variables — information provided dlraen- 

sionlessly by the values of F and G^, where . a    , a 

ave (x,. - x ) v a   a' 
a. 

and 

a 

:a.ve (xa - ^ff 

ave(xa - jc^y 

ave (x - IJ^p/^ 
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General Frcpagatioii fomulÄi for InuvM»«! 
farlablts wish ladapttidiiit K.iict«Ätiös« 

ave y " y0 

* hi i      a Z 
2 u    aa a 

aaa ^a 0a 

2 
D i 2 faaaa r«ff.* + I 2' faabb »a' °X 

ife 2 faaaaa Ga ^ " h 2' faaabb >a 'a3 «'fo2 

+ terms of order > a 

var y - S f. o'Q 

+ 2 fa faa ^a ^a3 

^ S fa faaa ^ 0
a
4 + 5 2 haa2 (ra -V* 

+ 2*'fafabbtfab2ifaab fb) "a" ab2 

+ ife 2 fa faaaa Qa ffa5 * 5 2 faa faaa  <Ga " ^^a.5 

3. 2 
* ^'z fa faabb + \ faa ^abb * fab raab + f ^aab V Va ?b 

+ terms of order > a 

2  2 (Note that the whole coeJiiciUnt of a  a.  is symmetrical so 
that only one of (a,b) and (b.a) is suirjned,) 
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Propagation forsulai for tlit mm whar« ^g fluctua- 

tions of zhe  individual variables are not iadt^pdent are of in- 

creased cotsplexity, and will be reported later. 

The c mputatlons leading to the formulas are simpli- 

fied by the introduction for the next two higher cumulants of 

»co-» quantities related to the-v  cuamiants as the covarianc© 

is related to the variance,  "/hay involve 3  and 4 arguments, 

respectively,  (Definitions may be found in Section 19, pages 7. 

l-2j. 

The structure of the detailed account is indicated by 

the following table of contents. Results are stated and dis- 

cussed in the first four parts, with d^ails left to the remain- 

ing parts» 

The examples have h^z  treated both by "main strength 

and awkwardness", and by more pol:.h^ methods, so as to give some 

idea both of what would be required for less simple examples and 

of how easily examples can be handled. 

Section Title 

L Introduction 

I PROPAGATION 

2 Moments 
3 Propagation into average and variance 
4 Serainvariants of cumulants 
5 Propagation into skewness and elongation 

Pages 

1 to 1.2 

I»2 to I«4 
I«4 to 1,7 
I«7 to Iall 
1*11 to I„12 

«WSBIS* 

.-;■,• 



Ästra et 

section Title 

II CHANGS uF TERMS 

Pages 

( 
6 
9 

10 
11 
12 
13 
14 

15 
16 
17 
16 

19 
20 
21 
22 
23 

General 
Transformation of individual variables 
Äeduced propagation formulas 
Causes and justifications of simplifications 

III EXAMPLES 

The first example 
The first example extended 
The second example 
Numerical examples generalized 
Probabilities of deviations beyond tolerances 

IV TfiANSFORMATION OF TERMS OF RESPONSE 

General formulas 
Specializations for power transformations 
Modes of use 
The examples 

V DETAILS OF PROPAGATION 

Cocumulants - definitions and properties 
Explicit formulas in two forms 
Independenc centered monomials 
Taylor series in independent quantities 
Generalized propagation formulas 

VI DETAILS OF FIRST EXAMPLE 

24 Derivative and propagation formulas 
25 Transforming individuals 
26 The general case 

VII DETAILS OF SECOND EXAMPLE 

2? The response 
20 Transforming individuals 

VIII DETAILS OF TRANSFORMATION OF RESPONSE 

29 Strategy 
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1. '   •      I 

i-Vi"* jas ■   ns in ''.indlvlduÄi" or "cca«g>onent" variables often 

combin* tc prepuce fluctuationt lö a "refeultant", f,@ysterw or "owraU*' 

veriable -- fl'uctjititajs la ft response,     Tvo claselcal exai^ies are 

the combination 't
npropagatloa") of errors of Individual operations 

in a physical neaeureaent and the coabination of within-tolerance 

fluctuations in a isecharleal or electrical asseabl;/.      In these situa- 

tions, as in a vide variety of others, it is ofte i desired to relate 

the distributions of coiaponent fluctuations to the distribution of 

resultant fluctuations.      For a long time, physics has used the formulas 

for "the propagation of error".      With the rise of modern statistical 

theory, it har been natural to regaiu the propagation-of-err or formulas 

as doubtful first apprcximatlons, and to try to avoid their use in 

situations of con^slex dependence,  even at the cost of proposing great 

complications in stuty- or experiment or even, perhaps, at the cost of 

seeking no answer to the prob lea. 

Insufficient attention  seems to have bean gi^en to the ques- 

tion of how accurate, or inaccurate, the propagation-of-error formulas 

would be, or tc how tney may be improved.      The obvious 

■ 
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first mm *• to oti^m ant study bect«r mpm%im%mm,    hUan 

mm m acne,  tn# ciaiieicai tmmlm turn out to be toetter mm 
most of yg t»d »uftpectei, 

Mt more can b# ^n«#    Tht typleal profcl« is naturally 

expressed as foilowai 

Given the functional  relation 

z - hCWj,,  w2,   ...#  Wk)  f 

and given inforaatlon about the distributions of the individual 

Ws which distributions hav.i been so chosen as to make the values 

of z  be distributed near ZQ  what is the probability that, given 

a "tolerance" + 6 [or -e or both], that z will exceed £o + 5 [or 

fall below zo - E, or either]? 

There is nothing in the expression of this problem 

which requires us to work in terms of z, rather than z2 log z 

v/T or z  : We can translate the boundary value z + 5 [or z - ej 

into each of these scales, or any other. Similarly, we may re- 

place w1 by w^ log w^ or any other helpful function.  And we 

may do the same with w2, w3, ...., Wk.  Thus we may as well work , 

with variables y, u^ ^ ..., ^ a funct.onal relation y = f(u , 

u2, .... uk), and a tolerance yo + 5* [or yo - e*J if We gain by 

doing this.  It will appear that we can increase the quality of 

approximation of the classical propagation-of-error formula in 

this way. 

t^ H**'**' ■*-*•*■■ 
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Alle the  fais« tachniqyes, concepts and Insists eould 

be  applied to the comhimtion  of (statisMcaliy) dependent fluc- 

tuations, the problem of eofaMnlng fst.»tlstf ually) independent 

fluctuations, --. which leads to slr^^er results — is of suffi- 

cient importance to lead us to treat, only that case.  (After all, 

most practical problems with depe- riv fluctuations can be con- 

verted into problems with indepem - > , ..nes by pushing back to 

suitable variables — often to var-lsv cs earlier determined.) 

I  PROPAtM^ZV. 

2.    Moments 

The basic tool of "propa^:-;.. ^ of error" has always 

been the "mean square deviation", ci. as statisticians now say, 

the "variance".  If we are to go tn , ^»e detailed approximations, 

we must expect to supplement this wi^i more complex quantities. 

The analogy between probat! -ty distributions and mass 

distributions and the moments of for. ,-. area, etc. of mechanics, 

early led to the description of proU. fcJity distributions in 

terms of "moments", either about zero 

M-, 2p(z) iz = av u/e 

'   .•» 
M.2 = |z p(z) dz ¥ 2 

^3 = z-;p(z) dz = ävj 2?, 
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s 
*   f 4 * i 

«»• 

or about the mean or average z  or i.u (thla notation is used as 

well aa u^ of the given distribution 

M.2 = (z - z) p(z) dz = M-g - ^  * ave (z - z) 

^3 = f^z " z) P(z) dz = ^3 " 3M.-,Hg + S^3 = ave (z - z)3 

U4 = | (z - z) p(z) dz = M.4 - ^1^3  + öM.-L
2
^ - SM-J = ave(?-z) 

• t • 

While the dimensions of M^ are the same as those of z, the dimen- 

sions of ttgj  M-_> ... are the square, cube, ...of those dimensions. 

It is often convenient to make this clear by introducing another 

quantity cf the dimensions of z. together with suitable dimension- 

less coefficients.  This .s most easily done, as has been done for 

a long time, by introducing the root-mean-square deviation, now 

commonly call^ " the standard deviation, a, where a2 = M-o, and ex- 

pressing Uy  u^, ... as suitable multiplies of a3, a4, ...  . 

Various systematic notations have been proposed for the dimension- 

less multipliers, but their use seems to lead to complexity of no- 

tation whenever several variables are Involved.  Consequently we 

shall here use the following rather unsystematic notation 

2 _ 2 
a = var z  = ave  (z-z)  = |(z-z)c p(z) dz. f 

!«,Vte:i^l,:-r 
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_  4 /     —v«* (z-z)    p(z} dz. 

•cr » ave  (z-z)    «* z)-5 p(z) dz. r(2-: 

We call y,   V,  and G relative third, fourth and fifth momenta. 

3.  Propagation Into Averages and Variance. 

If now we write crr 71,   ^ and G1 for the correspond- 

ing quantities associated with w1, and, similarly Og, 72, r2 

and Gn for those associated with w^, and so on and on, we can 

write down the generalized propagation of error formulas for the 

case where 

z = h(w1, w2, ..., w^) 

and the fluctuations in w^ w^, ..., wk are independent.  These 

formulas involve the partial derivatives of h^, w2, ..., w^), 

evaluated at the point where each waJ a = 1, 2,   ...,  k takes its 

average value. We denote such numerical values of partial de- 

rivatives -- such derivative values, as we shall say later — by 

h . h ... h,., , hr, h v., ... where the number of subscripts 
1  23'  111' 6*  aab' 

shows the number of differentiations and the particular subscripts 

specify directly'the subscripts of the w's with respect to which 

these differentiations were carried out. 

If we write z for the value of z when all w are at 

their average values., then 

llllliippppiN^< 
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m%~w       S       •       2^ 
O 

2       aa    a 

* B * haaa  Wa.* 

+ k 2 haaaa ra0a4 + I ^ Vbb  'a%2 

+ ra? ^aaaaa Ga0a5 + I? * \aabb 7aoa\
2 

f. 
+ terms  of order > a 

where  the  starred summation signs  are  to be  Interpreted as  In- 

cluding each distinct  term which does  not  identify subscripts 

once and  only once.     Thus   2*aa
2ab

2 would  Include   a^a* once 

(not as   a4
2a5

2 +  a^2)  but not   c,4,   while  Z*aja2 would in- 
3    2^2 «    D 

elude   a4  a5    + a5   a4     (and not merely one of these)  but not   aA 

This same convention on starred summation signs will be followed 

throughout.  (Note that haabb is symmetric in a and b by its 

definition.) 

Similarly, the variance is given by 

2        2 var z  = Z n  a 
a  a 

+ r h h  y    a 
a aa /a   ua 

(formula  continues) 

. 
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* I £ ftah^a   f"»^" * 7 « •W^V1»'»«* 

2_ er 
- ^(Vabb ' "ab    + Vb^)^'^ 

+ ^ 2 VaaaAV   + 5 J haah
aaa(aa-^)S5 

+
 ^f? hahaabb + i haahabb + habhaab 

i- 
1 ^^ s 
^haaabhb^aaa  Gb 

o + terms of oi^er > a 

The first tenn on the right hand aide is, of course, thp form 

which the elassical propagation of error formulas take for the 

case of independent w's. 

If we should be content to assume that the distribu- 

tion of z  were normal (* Gaussian), then we might answer our 

target question easily.  For the tolerance 5 corresponds to a 

standardized deviate of 

(^-Q 
+  5) - ave z 

V var  z 

which is, in case of normality, easily converted Into the prob- 

ability of exceeding 5 by making one reference to a table of the 

ciunulative normal distribution.  However, such an assumption 

could sometimes prove most dangerous, since for example h (w 
'     1 l'' '• ^ 

w2, ...-, wk) and h2(w1, w2, ..., wk), where h? = I7(h1-z )2 cannot 

:-xA'.-:.      ^,^,!..r^'i.\,    ...,.,. 
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both b# nearly non^lljr distributed. We wmat he  prepared to 

carry our fomulai further, either io that we laay ihoi» the 

normal approximation satisfactory^ or so that we may do better, 

as circumstances dlct-ate. It iü natural to attempt this by using 

the higher moments of z. 

4. Seminvariants or cumulants 

There Is much to gain by avoiding a frontal attack 

on these higher moments. First Thiele, and then R. A. Pisher, 

have vigorously pointed out the advantages, particularly when 

effects are being combined, of replacing the higher moments about 

the mean by another set of quantities, called semlnvariaftts or 

cumulants, for which the notation it,, K«, IU* ... is usuiu.. The 

first two of these are the "average" and the "variance", there 

has been no general agreement on similar names for the succeeding 

quantities, but the word "skewness" has long been associated with 

Ko. Although, unfortunately, "skewness" has also been associated 

with various dimensionless quantities, we shall here call JU it- 

self the "skewness", with the natural 3-letter abbreviation ske z 

It is th«  last cumulant to reduce to a moment about the mean 

(it« m M-^). In qualitative terms it usually tells us about a dis- 

symmetry of the distribution concerned — positive skew corres- 

ponding to a "longer" tail — one more slowly declining to zero — 

on the rl  ^ hand of the d'..ßtribution than on the left — negative 

skew corresponding to the irlrror image of this sltuacion. 

i 
1 
4 
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file next, fourth, ciimulant, K^ m  ^4-3^2 *  has long 

been connected with the wora "kurtosis" — a word which led even 

eminent statisticians no  mnemonic devices. We shall use, as an 

interim measure, subject to a better suggestion, the term "elon- 

gation" and the abbreviation elo z.  Positive elongation usually 

means that the tails (or possibly one dominant tail) of the dis- 

tribution fall toward zero more slowly than is the case for 

(comparable) normal (Gaussian or Maxwellian) distributions. 

Thus distributions with tails decreasing like e" %   rather than 
2 

like e'cz f  are almost sure to have positive elongation.  If 

tne tails are shorter than those of normal distributions, as no- 

tably in rectangular (sometimes called uniform) distributions, 

or in U-shaped distributions, the elongation is usually negative. 

Various devices have been psoposed to make use of in- 

formation from higher moments or curaulants in selecting better 

approximate distributions than the normal. Three broad classes 

deserve mention here, although none of them is available ade- 

quately packaged for easy use. 

Methods based on transformation into terms of increased 

normality were wrongly urged by Edgeworth in the early years of 

this century.  However, no generally useful methods were developed 

Transformation In the special situation with which we are now 

dealing is investigated in Parts IV, VIII and IX, with mildly dis- 

couraging results. 

•. 
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Methods baaed on series eitpanslon ir. tem§ of succes- 

»iire derivatives of the noim&l äiBt^ihution  have a respectable 

antiquity, were raodified by Edgeworth, mid  were brought Into 

their most useful and easily usable fom to date by Cornish and 

Fisher» In 1937« 

Methods based on a family of curve shapes based on a 

certain differential equation with a number of adjuscable para- 

meters were Introduced about the turn of the century by Karl 

Pearson. Practical use of these "Pearson curves" has tended to 

be onerous, until the appearance In 1951 and. In Improved form. 

In 1954 of convenient tables of ^ points** In standard measure 

for distributions following Pearson curves. In Instances where 

a standardized deviate falls somewhere near a tabulated value, 

those tables offer the handiest solution so for available, and 

their use, together with the use of Comish-Plsher technique 

might well have been described In the present memorandum. In 

view of the fact, however, that a still more convenient packaging 

seems possible, all detailed discussion is being omitted. 

*E. A. Cornish and R, A. Plsher "Momente and cumulants in the 
specification of distributions" 4 Revue de Institut Intern. 
de Statistique 1-14 (1937) reprlnUed.  as paper 30 l'i tuA, 
Fisher, Contributions to Mathematical Statistics, New York, 
Wiley, 1^5^ 

**Maxlne Merrlngton and 11,   S. Pearson "Tables of the 5^ ^nd 
0.5^ points of Pearson curves (with argument ßi ard ß2) ex- 
plored In Standard Measure" 38 Biometrlka 4-10 (1551) also 
In Improved form as Table 42"~oF'Biometrlka Tables for StatlS' 
tlclane. Volume 1, E. S. Pearson and H. 0. Hartley editors, 
Cambridge University Press 1954. 
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either the  Cornish-Fisher or Merringbon^Pearson tech- 

nique starts  conveniently from dlir.ensloniess ratios of curaulants. 

Those entering Into the Cornlsh-Plsher forroulas are 

^1 
SKe 

[var zj3/2      \x£>fö 

and 

^ 
elc z M-j 

' 2"     —? ~ $ [var z] |i2 

both of which  vanish for the  normal  distribution.     Those  enter- 

ing Into the Merrlngton-Pearson tables are 

ßi   = 
^3 —_ [ske ]' 

[var    z     ]■ ^1 

1^) 4    _ Q   ,     elo z p2 ^ -3 + 7 
M* [var    z     ] 

^ = 3  +  72-' 

whose values for a normal distribution are 0 and 3. Both ap- 

proaches make use of the standardized deviate, or deviate ex- 

pressed  in standard measure 

(zo  + 6)   -   (ave  z) 

*/ var    z 

relating this either to a modified deviate which may be referred 

to a unit normal distribution, or directly to the probability of 

exceeding z + 5. 



To kmp Wm reooM  ciear, we laiat «^Imsize that hoth 

methods are only approximate, thougn in practice usually ade- 

quate. Experience with the Pearson curves near the % points so 

far tabulated has been excellent. In further view of the con- 

venience of the Merrlngton-Pearson tables, their use for true 

probabilities of exceeding tolerance between, say,,0.3^ and 

B%    Is at   present to be recoraraended. For probabilities 

greater than about 10^ (and less than 90^) Comlsh-Plsher treat- 

ment may be r^st.  In either case, at the user's choice^ the 

purpose of more detailed calculation may be either to Indicate 

the adequacy of the normal approximation, or to provide a better, 

satisfactory, approximation. 

5. Propagation Into Skewness and Elongation 

We can now statf the analogous fomulas for the leading 

terms In ske z , and elo z , namely 

ske z ■ Sh-^-ya^ a 'a a 

+  3 2* Vab'^a"1)^3^2 

+ I 2*(ha\bb 
+ ^aa^b^ + 2hahaabhb VaV 

+ terms of order > a 

'^vMxmmmimmimm 
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elo z    » 2 ha (ra-3)aa 

+ ^ ^ na aa * a  %-' T| 

+ terms of order > a 

The detallsd correctness of the results of this ac- 

count, both above and in sections to come, owes much to careful 

checking and error finding by Miss M. S. Harold.  Thanks go to 

her from the writer, both on his own behalf and on behalf of 

future users. 

.......■.-,■ ■■■ ■-.■■■ ■...'. ...■■. ■ .■ . .> 
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idl^011 By gHAWGE OF TEMS FOR imiVimAL FARIABI^^ 

6.    Geneml 

We come now to the uaes of changes in the terms of study. 

The fraction of some population of electronic assemblies with a 

certain frequency greater than 400 cycles per second is, of .course, 

exactly the same as the fractions (1) with,the square root of the 

frequency greater than 20 (cycles/sec)1/^ or (n) with ehe common 

logarithm of the frequency (m cycles per second) greater than 

2,60206-.  if it is easier to work with one of these equal fractions 

rather bhan either of the others. It Is clearly to our advantage to 

do so. 

In some circumstances, where the use of unfamiliar terras 

of analysis Is called "transfomatlon", or even "transforming the 

data" there Is, to the minds of some, an unfortunate flavor of 

"cooking". While that feeling Is almost always (if not always I) 

unjustified, in the present situation there Is no slightest excuse 

for a similar feeling. Suppose that Individual assemblies are 

tested - for attenuation, resistance, amplification, critical fre- 

quency, or what have you. And suppose further that the result Is 

displayed by the motion of a needle across a scale.  Certain points 

on that scale correspond to assemblies below the tolerance, others 

to assemblies above tolerance. And this need be changed In no way 

whatsoever If the numbers on the scale represent, for example: 

(I) ohms 

(II) y/oFma 

T 

•:!!■'.-  -      ■,, 
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(ill)    iogarltte of otmB 

(iv)     (ohms) -1/2 

(v)  (ohms)'1 « mhos 

or any other similar scale.  Juet so long as the needle's position 

exactly at the tolerance Is Kept the same. Just so long will we be 

dealing with the same problem. 

All this has referred to changes In terms from z to some 

function y of z. The situation In a change of terms from some w 
a 

to some function va of wa is similar, but not Identical.  If we 

are to use either the classical, or the generalized, propagation 

forroulas, we need to know something about the moments of the dis- 

tribution of wa in one instance, and those of the distribution of 

va on the other.  This fact seems to have worried persons with a 

mathematical background and orientation far more than it should — 

as is rather natural.  If one starts to treat a situation by say- 

ing "Let us assume that we know the low moments of the w " and 
a    ' 

presume that "we may treat the Joint distribution of the w as 
a 

multlvarlate noiroal", and sticks rigidly to these hypotheses, as 

would be appropriate in pure mathematics, then he must realize that 

he does not know the low moments of the va exactly, and, moreover, 

if the Joint distribution of the wa was exactly multlvarlate normal, 

then that of the va cannot be.  If the first set of starting hypoth- 

eses was taken as gospel engraved on tablets of stone, then the 

transformation appears to weaken and distort the availablb knowledge. 

But in a practical situation this is only an appearance»  One never 

knows the low moments exactly, and, although one may ha# fairly 

: 

:. 



ip ßöod estlaatea, one often does not.  (In tolemnce mmljniB  altus« 

felons the lorn moimnt»  are often of a "but wlmt  if" clwracter, and 

are far fror, precise, j Moreover, If approximate normality could be 

assumed for the wJs, it Is not unlikely that approximate normality 

can be equally well assumed for the v's. We must never forget 

that, in applications of mathematics, exact hypotheses are usually 

only approximations to the real situations and that other approxi- 

mations may be as good, or even better, as those we first made. 

This apparently subversive, but actually usually unim- 

portant, effect of transformation of individual variables is enhanced 

in dealing with propagation formulas. These formulas involve de- 

rivative values at "the average point", and the average value of 

va, where va is a given function of wa, is not exactly the same as 

the given function of the average value of w . Thus the average 

point shifts under the transformation and the derivative values we 

need are not only for derivatives with respect to new variables, 

which we can evaluate by simple transfomations, but are evalua- 

ted at a new point, if we had known the old average point exactly, 

then this loss in firmness would have been relevant, though prob- 

ably not serious. But we usually do not know it exactly, and in 

practice we are not appreciably worss off. 

Thus, while it is conceivable that we might be able to 

handle the moments of the w and evaluate derivatives at the w - a a 
average point -- and still not be able to do the same in terras of 

the va. ~' such a situation is most unlikely to occur.  In practical 

situations, transformation of individual variable« may usually be 

undertaken quite freely. 
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Ii  Tmmfönmtiön  of the  Individual (Ccmponent}  Variables 

'rfe can discover theae transformations by complex arguments 

If we wish, merely by letting m   be some function of v , and find- 

Ing successive conditions on the derivatives of this function to 

inake more and more terms vanish.  nd then finding a function with 

these derivatives. But we may also avoid all this. 

Consider what happens if all w's except w are at their a 
average values, then z depends on wa alone, but usually not in a 

linear way.  If we may reasonably define vQ JO as to make this de- 

pendence linear, then in 

z =* gCv^Vg, ...,vk) 

the higher unmixed derivative values g^, gaaa, gaaaa, which we 

shall later refer to as successive derivative values, will all 

vanish, and the formulas will be simplified. 

When may we reasonably do this? Anytime that z is a 

strictly monotonic (ever-increasing, or ever-decreasing) function 

of each wa over its normal range of variation. For if we write 

v1>  w2,...fwk for the average values of w.^ w2,...,wk and 

*a(*a) ^(w^...,^, wa, w^,..., wk) 

for the value of z = g(w1,w2,...,wk) with all the variables, other 

than wa, at their average values, then ^.(wj is naturally described 

as, and called, the partial effect of wa at the average point (really 

along the line through the average point for which wn, w0,... w 
i  2  *J a-l* 



"'a+l'--'wic — "i1  «'s except «a — are constant). If we could 

introduce v^1) . fj^)  as a new varlablej s0 that 

z-gf^jv/^. v2(l) Vk(l) 

describee the reaponse, then the succeaalve derivatives (after the 

first) of gW(. ) wlth re8pect t0 ^(1)^ evaluated at the 

v-values corresponding to the w-average point will vanish. This 

will be so because z  = v^1) so long as the v^-s other than vj1) 

are at the values corresponding to this point, since the w-s other 

than Wa „in all be at their average value. Two difficulties then 

remain: First, the transfonnatlon may not be pennlsslble. Second, 

we wish the successive derivatives to vanish at the v-average point 

rather than at the w-average point. 

The transformation will fall to be peralsslble If two 

values of „a correspond to the same value of *a(wa).  m practice 

we require such slngle-valuedness of the Inverse only for values 

of wa reasonably near wa. Such a failure of uniqueness will 

ordinarily only occur when, because of design (or perhaps by acci- 

dent) the nominal value of wa has been chosen to make z  exactly 

or nearly a maximum or minimum with respect to changes In w . 

in most such situations ha will be small and h^ will be Important. 

It will then be possible to chooee va so that, while g  does not 
a.3. 

vanish, gaaa = gaaaa = ... = 0#  (Details are left to the reader.) 

With this exception, then, the transformation will ordi- 

narily be permissible, and we need only be concerned that the ^1). 

average point is not the same as the w-average point,  if we did not 

.        • ■ .. •   .  , 
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knc« the iocatlon of the w.averagt polnt preolsely/ thlc faot wni 

not concern u8 ve^r much. Either we die not know the partial effect 

ver^ „ell either, clnce it depends on the average point, and eve^- 

thlng 1S really about equally ha.y, or we were able t0 fc.ork wlth 

fonnulaa m whlo. the coordinates of the w-average point is ex- 

pressed by letters «hloh «e may substitute for when «e are done - 

and nothing prevents us from making a substitution corresponding 

to the new average point, although (if we have exact knowledge) 

we may have to Iterate a little to find the correct values for sub- 

stitution. Thus the shlft-m-averase-polnt-problem is not likely 
to be important. 

If we follow the program suggested above in detail, we 
would reach 

= g(v1J v ,..w ) 

with not only 

but also 

k' 

saa "" saaa * • • • = 0 

Sa = 1 

for all a. it is often natural to introduce particular v's which 

make the successive derivatives vanish, but do not have all Sa = i. 

We begin, then, with this more general case, 

■ä;—Reduced Propagation Ponnulas 

in the usual instances, we are merely, in system-component 

tenna, planning to measure the perfomance of a component by the 

performance of a syatem containing this component but with all the 

other components selected to be at the mean values of each's dla- 

fcribution. 

'-■   '-•■■ : -^^^^^aja^^]™e^&^>^il^^^i^ii^0tai^^M^» 
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üider these conditions, tne fonnuias simplify consider- 

ably.  We new have z = g(v1, v2,...,vk), where 

(1) the va fluctuate Independently, 

(2) gaa, Saaa, etc. all vanish, 

and the generalized propagation fonnuias reduce to those of Table 1, 

Notice that, although the first correction terms to the average, 

variance and skewness are all of order o4, their relative orders 
4  2 

are a , a and a, respectively.  Thus correction terms are mest 

likely to have nade a noticeable fractional change in the skewness, 

next in the variance, and least in the average.  Note further, that, 

except in the leading term  for the elongation, only the variances 

aa and skewnesses y^J*  of the individual variables, the v , enter 
a 

the generalized propagation formulas in terms of order < a5.  Thus 

the requirements as to knowledge of component variability (in the 

new terms.') are not as stringent as we might have feared. 

w 
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1 a D x c i 

Propagation In the Special Case Where g ,  g    ,. etc. Vanish 
3,3. 3.3.8. 

(Individual Variables measured proportionately to partial effects) 

ave z = z (i.e. z calculated at the average point) 

+ 7 ^ Saabb aa % 

+ T^ Z* saaabb ^UJ%2 

+ terms of order > a 

2 2 
var z = 2 g„ a      (i.e. the classical term) a    a 

+ 2*   ^agabb + gab' + SaaiAKV 

+ 2*   ^ easaabh + äabgaab + § Saaabb ^aaa3ab2 

+ terns  of order >  a 

ske    z    =    S ga
3 7aaa

3 

+ 6z* gaSbgabaa
2ab

2 

+ 3Z* gagab2^a-1)aa3öb2 

+ | 2*   (ga
2gabb + 2Sagaabgb)raaa

3ab
2 

6 
4- terms  of order > a 

elo    z    =    V(ra-3)"a4 

o 
+ terras of order > a 

(Symmetry of g , and gaabb In a and b to be recognized in interpret- 
ing 2*) 
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We are now prepared to seek further i ondensatlon of these 

propagation formulas. We may  gain a little by arranging for all 

the ga to be unity — we had already expressed the individual vari- 

ables in terms such that gOQ, g^^ä, etc. all vanish, we can still 

choose the size of the units in tenns of which they are expressed. 

We shall then be measuring each individual variable exactly in 

terms of its partial effect of its response.  (This is entirely 

analogous to inspecting components by measuring the performance of 

a standard system in which all other components are at the average 

values of their distributions.) 

If we Introduce reduced or standardized quantities T 

through 

Ta = Sa aa ' 

2 
then T  will be the variance of the reduced variable x = g v . a a  ca a 
Moreover, y    and r will be the ssme for the distribution of x a     a a 

as for that of v . We only need to, define seme t's by 

f  = gab     I -  Sabbb [ab  g g ^   ^abbb - ~1 
a D sagb 

and the like, where the subscripts, as on t's and s's generally, 

do not mean simple differentiation, in order to obtain the pro- 

pagation formulas in the form given in Table 2. 
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The Propagation Fomaias In Recced FOM 

Individual  variablea measu1 
trea as partial  ertßctnj 

ave    z 
3 (l.e,   * evaluated at the average point) 

+ z* (i t        h 2r 2 

•^     o ^   S*   Ji- t        ^ly  r  \ 
(12    aaabb)^^ Tb 

+ terns of order > T
6 

var z »= s (I.e. the classical term) 

't 2 S_ 2 
;1,   'aab + tabb) Ta"Tb 

+ Z*  I? 'aabb + ^ab^ab + I 'aaab j^a^3^2 

■+• terms of order > T 

^a^     (i.e. the sum of component skewnesses) 

+ S* (6 t . )T 2
T 

2 
v  ab; a b 

+ ^  (3 tab2)(ra-l)Ta\
£

+^(3taab+|tabb)7aTa3Tb2 

* terms  of order > x o 

elo z = s fr -i o 
v » a  w' / (i.e. the sum of component elongations) 

+ tenris of order > Tb 

(Symmetry of t K and t 

Ing s*.) 
ab axlu ^aabb ln a and b to be recognized in interpret- 

Wl$0l&(8$ita.'     ' ''^»^^^^m^^^mm^m 



In preparing mblt  2 we  have tried to throw each for- 

mula Into its most usable form, and have consequently comMned 

numerical coefficients with the t!s they modify,  m general, the 

roost important terms, beyond the leading terra in each formula, 

seem likely to be the second and third terns for the ske-mess and 

the second term for the variance. * 

^—The  g^ses and Justifications of Simplification 

We  have now reached a fairly compact set of propagation 

fomulas which contain all terns through those of order T5.  it 

is time for us to inquire into the assumptions, explicit and im- 

plicit, which have entered into the development-indicating the 

,     Justification, complete or partial, of each.  The list to be ex- 

amined includes assumptions that: 

| (1)  the functions considered are sufficientlv 
■■V-   .    :   : ■■.■■■     ■■■        ...."  ■   .:- ■■-,..■:       .- .          .■..,■ ■ ■■■ i....     .■ v     :■:.;:- -..;,    ■..;...,        .■ ..      ■        ■ ■.        ■■'■ ■■■..■ ■       ■   .■ . ■ ■       ■::;.   ■.. ■   ■■     ,. ■, ..■ ■ . ■ ....       :■   " .:„■.■-■     -.     .-.   ■■       , ■■     ■■     .-, -.   -.:. 

differentlable to have convergent Taylor 

series, 

(11)  the functions considered are, locally, 

sufficiently like polynomials to be reason- 

ably well approximated by the first terras 

of their Taylor series, 

(ill)  the variables taken as individual (= component) 

variables have independent fluctuations (at 

least the cross-mouients of order < 5 vanls:. 

when the variables are expressed in particular 
■:>-. 

■■ 

terms). 
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llv| ü n^y use an öxpana'on around the average 

values of the lodivlaual (- component) vari- 

ables, expressed In whatever fcerais .M »ay use, 

(vj the ^sP^s€ {-  overall) variable io a strictly 

monotone function of each Individual (» com- 

ponent) variable, 
h 

I The streneth of (l) and (u) ca.. be fairly „ell dlseuased 

I   in tarms of z = h(w) where the function h la useu as a rectifier' 

If we have a quadratic rectifier, z . cw2, then the baslo fomul^ 

f   (though net those reduced by transfomatlon of Individuals) will 

[   apply,  if we,have an ldeal Unear reotmer) z = i.vil   ^^ (i) 

falls because of the misbehavior of the derivative at zero.  If 

we observe that actual "linear" rectifiers deviate fro., .Ideal- 

behavior at zero, and manage to behave as If they have a continuous 

derivative, we find that (1) is satisfied, but that we are likely 

to be troubled with (11), 3lnoe the first derivative la nearly 

constant, except near zero, where It changes rapidly. This may 

well be far from polynomial behavior! Only if our 'linear' rec- 

tifier la quite far from 'ideal, can „e expect even generalized 

propagation-of-error formulas to be a close approximation. The 

application of (i) and (11) to other, more complex, situations 

tends to follow the pattern set in this example. If a single 

vaiue of each first partial derivative Is sufficient to guide 

even the roughest design (and sometimes when this is not true) 

both (1) and (11) are likely to be well enough satisfied. 

: 
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•Oie classical formulas arc frequently written, not only 

for independent variables 

var    y    ^    2  (XT']       var    xa io-a; 

but also for the general  case 

var    y    -    S  (
(||-j       var    xa 

a 

+  22" iÜr] [iri -v  (VXb) 

Why have we not followed the pattern in setting forth the general- 

ization? Both because it would be difficult, and because it would 

really add little.  The added complexity, for the classical formula, 

is small, and pays for itself in flexibility — in the ability to 

work with intermediate variables whose variances and convarlances 

have been already obtained by previous uses of propagation formulas 

-- in the ability to deal with situations where it is hard, or in- 

convenient, to find statistically independent variables.  In prac- 

tice it seems to be the first ability rather than the second which 

is usually important.  Thus the availability of the classical for- 

mulas for the dependent case buys something, but not very much. 

Building provision for statistically dependent component variables 

into the generalized formulas would greatly complicate them -- so 

much so that it seems unlikely that terms beyond those of order 

T  (or perhaps T ) would be written out.  Thus the effort of seek- 

ing basic Individual variables with independent fluctuations is 
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likely to be far less than the effort of working with formulas 

for dependent ones. Thus   (ill) has much practical Justification. 

(In those instances where it does not hold, it will, of course, 

be necessary either to use the classical formulas or develop 

further approximations.) 

What of the remaining assumption — that we use an 

expansion around the average values of our individual variables? 

When we recognize the inaccuracies of our knowledge in any prac- 

tical application, this assumption does not really seem serious. 

If our knowledge is basically mathematical and approximate, gained 

by calculating values of partial derivatives at a certain point, 

then it may be true that this point would not be the average point 

in a real situation. But it is quite likely to be true that we 

do no^- kuow accurately where the real average point will be. This 

means that we must interpret cur derivatives, and all that hangs 

upon them, with caution and some allowance for variation.  This 

will be the case for any formula, whether or not It expands around 

the average point. 

In order to deal wisely with this possibility, we need 

to know how the ga and tab change when we move from the point 

'^KV ^O'*••■' vk0 to the near,by Point v11, v21,..., vkl.  If we 

let V|j v2,..., Vj^. be the displacements, as measured by the re- 

sponse at the average point, i.e. 

i 
■ 

= g(v10,v20>..., val,,..,v  )-g(v 0,v?0,...,van,...,v,n) 
aOJ kO' 
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then the original fowta and first orj^r corpeetiofi tenr.s are in- 

dicated by the following expreEslons 

and so on^ including 

^aabb^1 " 2c(fcaaabbc " 3 ^c " 2 \Q^c  + "^ * 

These formulas provide the necessary guide, should it ever be 

necessary to quantitatively Judge the adequacy of the approxima- 

tion with which (iv) holds. We may expect that it will usually 

be good. 
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lv. «me First Sxarale 

Ue nom  report tne result» >! r.;^:v.i.:ve discussion 

of trt-o moderately slmpin examples btrglnning A'Ith the time delay 

of b.  lumped-constant delay line, each section of wnich consists 

of an inductance L and capacitance C (initially) of the same 

nominal values.  (The detailed calculations inay be found in Part 

VI.) The orignal functional relation may be written 

delay . 2 STpq   +^^ + ... +^ Ig^ ^J 

where we have used odd subscripts on inductances and even onea 

on capacitances so that a subscript- points uniquely to a com- 

ponent. 

For convenient insight, we fix the units for L and C 

so that their nominal values are both 10.  This means that o = 1 
a 

corresponds to a standard deviation of 10^ in the Inductance or 

capacity of component a.  (Realistically,, then, a's may be as 

large as 2,  but are more likely to be fractions like 0.6, 002 ör 

0.06.) 

Direct application of the original formulas now gives 

(terms arranged in order of size of coefficient -- those with 

coefficients smaller than 0.000005 omitted) 

ave =    10J   -  0.0125  2 ao
2 + 0.00062 2 7  a 3 

-0.00002  2(2^.^.^ 

a a 

2      2      0 |j.v 
21-1   >J2i     +  2r2ia2i   ' 

+   , . 



*»  f 11*^   « 

vm   %   • Ö.25 i g2 m 0.01250 z y^J 
a »■ 

# 0.Q0016 2   c/u-i*1)^    * - 4o_  ,
2

CJ..
2
 + ^r^-ii«..4! 

fc J. — J. ■021~1   ü21    +   ^^i-^^l   j 

# 0.00002  E(Ga^)aa
5-0.000^  Uy^^a^^y^a^c^Ja^2 

+   ... 

ske    z    « 0.125 2 y^a " 
3.   3. 

2 2, /r,       n .        4 
- 

- 0.00937 ^(r^-Dc,^ - 4^./ ^^{^-Da^ 

+ 0.00023 2  (3G„-47ja * 

P.^     2 - 0.00047 sLOr.i.a+s)^., + (3^+2)^^,/^ 

+ 

elo    z    = 0.0625 2 (r -3)aa
4 + 0,00625 £ (GS^w  )a 5 

a   a ' a 'a' a 

and It is clear that, in every case, at mopt the first correc- 

tion term will have any numerical Importance. 

If we transform the individual variables, to make 

partial effects linear of coefficient one, then we have 

Ta = I aa ^ 

where aa is the standard deviation of the new a
tn variable, and 

toi'ÄÄ 



... ... 

sve     2     »     ivj  + nc  of.her  te 

var    t   •   S Ta
2 4- 0.01 Z ^l-l^Si    + l10 otlier ^e^3* 

ske 2      2 Z V^ + 0.5 £ T^^  T21 

2_     2 
+  0.03  2     (721.l"1^2i^  +   ^^i-^^i     T21-l   T2i 

+ two sets  of terms  of order T 

elo    z    -    2(r -3)T^     + terms  of order from  1°  to T  J a.   a 

where subscripts a run from 1 to 2j and subscripts i from 1 to J. 

The qualitative simplification is obvious.  One term instead of 

5 plus higher terms in the average.  Two instead of five plus 

higher in the variance.  Three plus two higher instead of four 

plus higher in the skewness.  One plus higher instead of two plus 

higher in the elongation.  The quantitative simplification in the 

variance is also important.  If a < 1 for all a, the second term 

in the variance is less than one-thonaandth of the first. 

In the skewness, however, the second term retains con- 

siderable importance in comparison with the first.  Practical 

use of these formulas would probably Involve one verm each for 

average, variance, and, if it were required, elongation.  If the 

skewness were required, at least the second term would, and the 

third term might, need examination  In terms of transformed indi- 

vidual variables, then, terms beyond classical propagation of error 

need be considered in at most one formula. 

■ .■•■*!' ■■ • . . 
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3.1. The first exanyle gfener^l:::ed« 

If we now consider a delay i ine in ^hlch the n^.liml 

values of the elements need not be the lÄf fro:;; seccIon to sec- 

tion, it becomes convenient to introduce new quantifies 

-.^/T    ^  _, iifi^  delay of 1th section. 

^21-1 
standard deviation of V^oi-i T2i-1 

average value cfy^TT^T 1 

T^ 
standard deviation of vCpi       T2i 

21 average value  of v^vöT 

In tei^ms of these quantities,   the  formulas become 

ave    z     =    St, j 

var    z    = ^i^ai-i2 + ^i2 + \i-i2 Tiai2'- 

ske    z     -    Et 7*<--.1%A-l3    +   rpi'Mo!3   +   Oil ;S    Tj, ^i-l'^l-l 21'l21 '21-1     '^i 

+ s^si.r1^!-!^2 + ^i-^Ai-i2) 

+  terras of order > t  , 

elo    z    = 2t. (^i-i-S)^!-:4 + 'r21-3)Ti214 

■•■x. ■-    „   ,     6 + terms of order > T , 

and are clearly easily manageable . 
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ig.     rne second example. 

The attenuation caused by a f-sectlon network of 

series  resistance fL. and snunt   resistance  HÄ and  H^,   operating 

between Image  impedances R,   Is 

1 "^ M ^i+ I % fir * cl * f fe 
B 

'RC + ^C) 

If we write this in terms of changes from ncminal,, the unit for 

each change being 10^ of the corresponding nominal value^ we find 
• 

RA = R m ^ + 0-1 WA' 

R
B • R ^H-1 f1 + o-1 WB' 

- 

: 
3" 

Rc- R^T4 t^0-1 wo) 

where a is the design attenuatlonj and calculate the necessary 

derivatives, the generalised propagation formulas become, if we 

introduce abbreviations ß, y \no%  the same as y,,   ySJ y„  for the 

w's) and 5 by 

0 _ a a - 1        (a-1 )'5    .   (a - 1) 

the following: 

(iJö^W¥W^W^^^feÄi^!*ää^«ia(M»1!^^ ^«^»(««^"jww 
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ZW    s    * a       Ipruvm m * 

2, 

ims ör m^§ w8 tiid w«  vjnish) 

♦ 0.01 ß(Q £ +  ^ «I 
m C 

- 0.001 ß(rA  a^ t .„„^j 

* 0-0U01 ^^"A" 
+  ^a/) 

+  0.0001  7GA
2ac

S 

- o.ooooi ß(aAcTA
5 + a ac

5) 

+ o.ooooi r (VA + 7c0c) 0A2ac? 

'"*'*     #"■:-*':: * 

var    z ,2   / _ 2   .    „     2 = 0.01 ß^  iak* + 4aB
d +  a/) 

-  0,002 ß2  (7AaA3 +  ^^3) 
I 

+  0.0001  ß' 4 (3rA - 1)  a*+ (3rr - l)a( 
4 

+   0.0001 j_(62 + 4ß5)(aA2 +  ac
2)aß

2
+(A4ß7)oJ2ac

2 

-  0.00002 ß' (2aA " VaA5 + (20c - rJ  a 5 

(formula continues) 



'•'-        '     .11 
-       i ft. 

f»1 «p BJt 

0.00001 [OS2 + 466n^cA5 +  rcac
3)OB

2 

.(2>s^h)(yAVycac)  s^tJ 

•4* ~    » # 

■ke    z 0.001   ß3   (7,aA
3   -   8y   a 3 +   y   rr  3^ 

- 0.0003 ßJ 
rA 

-      1 ' ^Mr,-!)^] 

+   0.0012  ß26   (o  2 +   r 2)   n 2 ^   n rtArvÄ  02 2 p       l0A    +  ^C   J   aß    +  0'0006 ß^  aA^cr 

: 

o,oooo3e^_(2GA.3.A)OA5+(2Gc.3yc)(Jc5j 

-  0.00003 ß6 (7A   -  l)a 
AaB    -  2(7B -  l)aB

3(aA
2-c

2) 

{yC   -   l)a  3a_2l aC   aB J 

-   0.00003  67' J**   -  l)crA  -   (7c   -   l)a C 
rr    2        2 GA   ÖC 

0.0000. ßh j_(4,Ä0Ä3 + 4?cac
3)a/ ^i%

2+^) 

-  0.00015   (^  +  7cacj   ^2^2 

i-    . , 
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elo g . ^^^|l%-ll%*#li|%*3| %** ffrtJ%^ 

* O.CKK)04 ß f% - %J a/ ♦ {ac - ii7 ) 0i 

+ .. 

While some of these formulas appear rather lengthy, it is clear 

that the first two terns will give either the average or the 

variance to working accuracy. 

If we seek to transfonn the individual variables, we 

are immediately led to begin by replacing the resistances R of 

the shunt arms by their conductances Y.  The attenuation then 

becomes 

Z = ! + 5R «B + I «B K + Y0| + | [YA + Yc + KBVCJ 

and we place 

YA=S TVT ^  + 0-1 V 

RB^9-^r1 d + 0-1 V 

y„ = 1 a - .1 
C   R ^TT f1 + 0'1 ^1 

rom (Note that dWA/dVA)-(dWc/dVc) m  -i, not +1.  This deviation fror 

our general practice is a matter of convenience only.) 

The generalized propagation formulas now become: 

.^jpassftsrasife ,. 

-:^;'v,/-:,:,-M; 
^MP 

■ 
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mm    z    «a   ♦ ♦♦*      {prm/lmü, tm m®mm values of vk,  v^ 

and v^ vsilsn> i 

var    z       = 0.01 ß2 (0Ä
2 -i- 4aB

2 +  oc
2) 

# 0.0001  52(aA
2 +  0C

2)   oB
2 

* 0.0001  y2  a/  a/ 

+  ... 

3 
ske     z       =    0.001  ß"3   (^o^     + 87BCJB    + 7cCC^ 

o Q2 2x        2 
T 0.0012 ß^5   {cA" + ac   )   aB    + 0.0006 ß  7  aA  a I 

+ 0.00003 ß8 ^A  "  1)CA3 +   ^C  "  ^   aC3 c 2 

+ 0.C0003 ßr 
2 

(7A  "  l)aA +   (7C  - i)crc 
2     2 

aA  0C 

+ 0.00006 ß52   {7B -  !)   o3
3   (^A

2 +  ac   ^ 

"i"     « •  • 

elo    z       =    0.0001  ß' 
4 (r    - 3)a " + l6(rR - 3)0^ +  (rn-3)a 

A 'A B 

+   . . . 



mil® the meonä term  for the sw^ge and the variance .-.igfit 

be worth coaputlng roushlyt   they   u-r anllKvIy to . akc enju^h 

of a contribution to bother with. 

13*  Numerical Examples 

Let us consider the second example, and suppose that 

the elements to be used are 5^ resistors, 10^ resistors or 20^ 

resistors (i.e. have these limits on deviations from their nomi- 

nal values) and let us, for simplicity, assume that their dis- 

tributions (within these limits), are uniform.  Then the necessary 

numerical values will be as in Table 3, which also gives the for- 

mulas for the cumulants of the attenuation in terms of a2 for a 

nominal attenuation of 10.  These formulas will converge most 

slowly when all resistors are 20^ resistors.  In this situation, 

combining terms of the same order. 

ave z = 10,0000 + 0.1091 + 0.0029 + ... = lO.ll.O + 

var z = 1.3389,, + 0.0524 -f ...= 1.3913 + ... 

ske z « 0.0000 4- 0.2341 + ... = 0.2341 + 

elo    z    =    -  1,0755 +   .. 

'■■■-; ■: -■ i ■        '   ■■ ■■ ;■■■■■'■ ■■ 
"■■'■'■■■■'■■■■■■■■■■"■■■' ■ 



,»fe. A.. S--.     ' ■■*■■■ ■*-■ 

r:,ci<: 3 

Numerical quantitle1? for uniformly distributed resistances within 
specification 

Limits Limits      a 
Resistor on W   on w     for w r    ^ 

5^ ±.05 ±.5 .0833 0 1.8 0 
10^ ±.10 ± 1 • 3333 0 1.8 0 
20^ ±.20 ±  2 1.3333 0 1.3 0 

Formulas for cumulants of attenuation in terms of a  (through 

terms in a ) 

ave z = 10.00000 -t- 0.04091 (afl
2+ac

2)+0.00074(aA
4+ac

4) ^A 

: : ■      + 4aT,
2+ap

2)+0.00736(aA
4+üc

4) JA JB     VC 

ske     z 0.0l642(aA
4+ac

4)+0.07381(aA
2+ac

2)GB
2+0.0l688aA

2ac
2 

■^t*^;        #::  V   • 

elo 2 = - 0.03368(öA
4 + l6aB

4±öc
4)+... 

Clearly the leading terms in the average, variance and 

elongation need little adjustment.  The first term in the skewness 

is zeroj so that the leading correction terra contributes substan- 

tially.  There is no reason to believe that the neglected terms in 

cr and higher will affect more than the 6th significant figure in 

the average or the 4th in the variance.  If this be so, then un- 

consldered terms are utterly negligible. 

•■ 
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atment iust prlvcn 

., 

I-12 • 

assumed a yniform distribution 

of re 
■*.%,■     ^-      ,  »■ - * -W      -1. -X  A. -«* :A. .n 

case with my  actual sunnly of resistors.  In pnctice it is not 

unlikely that we should know enough about the actual distribution 

assumption but our knowledge to make a somewhat more reasonable 

will always be far from perfect. The assumption that the distri- 

butions of conductances for the shunt elements, and the distribution 

of resistance for the series element, are all uniform within tol- 

erances is manifestly arbitrary.  But it is not a bit more arbitrary 

than the previous assumption.  (We rni-rht expect the logarithm of 

resistance or of conductance to be nearly uniform under certain con- 

ditions.)  If we make this assumption, then we have to deal with the 

numbers and formulas of Table /f.  Here, if a = 10 and all resistors 

are 20%  resistors: 

ave z 

var z 

ske z 

elo z 

10.0000 + ... = 10.0000 + „., 

1.33^9 + 0.004^ + ... = 1.3437 + ... 

0.0000 + 0.2925 

-1,07547 + ... 

+ ... » 0.2925 + ... 

**«w«w^^^^»- 
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lu^rical  Mu^iu  e4  fur  uuiFovm dioiribuUun *Uhin   ioleranc^s 
rcrr stiunt  conductances and  series resistances 

Resistor 

20£ 

Limits 
on  V 

±0.05 
±0.1 
±0,2 

Limits 
on v 

±.5 
± 1 
± 2 

a2 

for v 

0,0033 
0,3333 
1.333 

for v or Y 

0 l#| 
0 |J 
0 i^ 

0 
0 
0 

wh™Uaa= 10r CUmulants of attenuation in terms of  a2  (of v's) 

ave 10.00000  +   . 

var    z    « 0.16736(trA
2.4cTB

2.oc
2)  . 0n00136(0/^^)  ^2 + 
2. 2 

i 

ske    z    * 0.07394  (^a/)^2 + 0.01664 (?AV ^ • 

elo    z    - - 0^03361 faA^+l6crB^cTc
4)   *   000 

M 
- im 

r- 

The propagated values of average and variance are some- 

what different from the results obtained under the previous assump. 

tion. These differences must^be slight from a practical point of 

view since they derive from assumptions which are practically in- 

distinguishable.  Practical accuracy will not be understated if w@ 

predict 

ave z « 10.0, 

var z » 1.35} 

ske z • Oo39 

elc z = -1,1 

for the result of using 20^ resistors for all three elements« 

Qualitatively, the indications are that one correction 

term foi t.e skewness and no correction terms for the other cumu- 

lants (average, variance and elongation) will suffice if we work 

with suitably transformed individual variables« 

tvlViowi.   Ub-.'>4     «_«■.!   ^v '       -'   ^        ,        .-,. ■ ■ + ::'   --■,., ; ;^::    ■ 

.."■..■•.■,    ■■■l      • 
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14, PFJ f g Ultiea of |i tiM Ions  beyc-iu j ob-i-ancea 

Let us continue the previous exajripie, jaappuali^g tLat 

attermatlons between 8.5 and 12.0 are acceptable, while those out- 

side these limits are not acceptable, juet us begin by calculating 

probabilities by the normal approximation. For all resistors 20^, 

ave z    = 10,12 and var z » 1.34, so that the limits lie at 

standardized deviates of 

o 8.5 - 10.0    , on ov,,  12.0 - 10.0 _ . 7 —  « - 1 <,29 ana —-—•--~~~~~:— ~ J.* f 

respectively. Reference to a table of the standard normal distri^ 

bution indicates probabilities of 9.85^ for too low attenuation, 

and 4,27^ for too high attenuation. 

If we wish to make better approximations we find first 

that 

0 ^ 
71   = t U/£  ~  ö'19 

1
      (1.35)3/2 

2  (1.35)2 

and, consequently, ß-, = 0*036j ßp = 2.40,  Reference to the 

Merrington-Pearson table (specifically table 42 in Pearson and 

Hartley) for these values of 0, and ß2 (and positive skewness) 

leads to the following 

^'^^»^•»mmmmmm^fl%^^0^^   >?,. ^ 



homer Deviate 
Mowaal     . 036,2, »0 $&$&,<& 4> * 

If 

-1.645 
-I.960 

-2.325 

-1.57 
-I.76 

-1.93 

-K07, 
+ .20' 

+ .39£ 

0 

Upper aviate 
Homal    .017/2.78 

+1.645 
+1.960 1.99 

2.26 

JW  :*L  .4-    *       # 

+.07£ 

+ .03' 
-.061 

0 

■S 
> 

We are thus led to modify our standardized deviates as follows 

-1.29 + 0.01 m  -1.28 

+1.72 + 0.06 = 1.78 

These modified deviates, when looked up in a unit normal table 

correspond to 10.03^ below and 3.75^ above, the changes in the 

two tails tending to compensate one another. The total % out- 

side tolerance decreases by 0.525^ - O.lSjg = 0.34^ out of about 

14^. Clearly this change has little practical significance. 

Thus, as illustrated above, the methods of using higher 

cumulants are often of most value when they demonstrate the un- 

importance of the correction. 

^mmmmmm'Mmmimi& „ immimm$im0milimm»r, ,. ,.t ^ 
«aSxSS*-5 ■&,;,; 
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15» General fornmlag 

te have ROW to consider the possibilities of, and neces- 

sary machinery for, changes In the terms In which the response is 

measured. We shell clearly wish to keep partial effects linear. 

This requires us to change the terms of the individual variables 

at the same time that we change the terms of response. 

If z = g(v1,v2J . . ., vk) was such that gaa, gaa&, etc. 

all vanished, we want to apply y = ^(z) and compensate for this by 

also applying va = va(ua), so that in the resulting 

y = f(u^Ugj , . . j u. ) 

we shall have ail faa, f^, etc. vanish.  If we maintain the 

verbal definition of the Ta — the standard deviation of the partial 

effect of individual variable a   rather than maintaining its nu- 

merical values, so that now 

Ta  = fS  
v^ V 

then the propagation formulas involve the Ta and the reduced higher 

(cross) derivative values of f, defined by 

= __JLk   a     _  aabbb 

a "b 



- nw 

"$lM and the like.    We can,   fortunately  express  tt 

in terns of the I »s and the derivative  values of », 

(ave  2), 
■i 

♦   .   . 

The  resulting formulas,   derived in part  VIII, are 

!ab  = ^b + V 

abb       ''abb      ^    ^ab + 'P     '  - 9 V, 

5abbb  - ^bbb + ^V  - Bcp"?")  tab  + (plv-  4(p"'(p" + 3,,^^^ 

s = t -^   9"   (tOQK   + 2   t 2 
aabb aabb       -     -aab      -   ^b    -f t -J 

abb^ 

+ (V-  - 3W")  tab  + ^^ -  W + f,v,v 

and.   Indeed, 

5aaabb  " ^aabb  + 69,, t
5ib

t
aab  + 6(cp'"   -  q)"q)M)taab 

+  (29"'  -  3v'V')  tabb  +6(0   -    9>-)tab
2 

+  (6cpiv -  169" V + WV'H. 

+ V Iv (pv   -   V   cp 

aD 

"»»">     4-   rm"!.^"«»' "   qp"V"   + Tcp'-'cp^cp" -  a^'Vcp^" 



16• gpeclall—-*-!Otis for power tmnaformetticns 

We are ysually not going to use a more complicated 

transformation than y - A(z+c)p (or one of the  limiting foma of 

this family, which Include logarithmic and exponential forms). 

The higher derivative values, qsiv, cpv can be thrown back onto 

qp', qp" and (p"' for any such powor transformation (see Part VIII 

for details) and if we fix (p' - 1 and use these relations, we may 

find forn ilas for directly changing the actual coefficients of 

Table 2.  These formulas are given in Table 5,     The abbreviations 

L = qj"' - (pV 

and 

!. = qj Q3 

contribute substantially to compactness 



'f"tf 

Effect on coefficients of a power transformation 
(with f* »1) of response and related tr&nsfomm- 
tlons of the individual variables. 

rr_ r» Abbreviations:     B « f"»  -  spV,       E ■ fwf 

abb aabb      y v aab ab abb' 

+ (4D+E)t .   + A D(2I>fE)   , ab 
9 

saaabb  = ^aabb + 6<
P" ^b ^ab + 6D ^ab + (2D-E)  t abb 

+ 6D ^b^  + V {12D2 + 2DE - E2)  "ab 

+ | (61P + 2D
2

E - is:c) , 

saab + sab2 + sabb ^ ^ab + ^b2 + ^^ + 4<P,, ^^ + (2I>+E)   ' abb 'ab 

5 aaabb ^ sab saab ■f 3 Saaab 

: "5 taabb + tab taab + 3 taaab 

+ *"  (I ^ab + 2tab2 + ^bb) + ü (22D+7E) t ab 

^n (10D2 + 7DE) 

sab = ^b + *" 

3 ab = ^b +  2(P ^b + E ^ 

3SQQK + | 8„vv = 3t„^ + ^ t^v + § cp" tQK + § D aab  2 abb 'aab  2 abb  2 'ab 

KlBSRiPiSv::H;i^' ^r'-J 
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One Bubstmitial  advantage of fable 5 is that it allows us 

to calculate the effect of a power traneforraatlon with chosen 

^and f "s on a particular set of propagation formulas without any 

necessity of calculating the power transformation explicitly. This 

often sulTlces, by showing the most that can be done. 

Actually, as is shown by one of the examples (see 

Section 37)i the apparent form of the power transformation is 

sometimes shifted very much by small changes in y"  and ^"'e  The 

nature of y « 9(2) near 2 = zo will not change much, but the 

analytic form may change considerably — as from 

y = (400)VS (z +^_)V3 

y - - 213.7(z+l4.42)'-2757 

which, apart from an additive constant, are quite similar near 

z = 0.  The c Jn (z + c)p imparts more flexibility for a fixed p 

than one naturally supposes. 

If one wishes to restrict attention to the simple power 

transformation y = Azp, then only qp" may be chosen, and 

I 9"' = <PV - f <?" , D = - cp'/z. E = <pV' 
o / o 

are an inevitable consequence. 
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27.    Modes of use 

Me may yse this freedom of transfomatlon of terms of 

response in various ways, the moat promising of which seem to be 

either further simplification of formulae or reduction in pkewness 

of response.  More detailed Inquiry In Part VIII leads us to the 

views (l) that the latter will only Infrequently be practical, 

since Its effective accomplishment depends on detailed quantitative 

knowledge of the y&  and Ta and (ll) that effort on simplification 

cf formula Is best concentrated on the annulling, or reduction in 

size, of the coefficient of Ta
2 T^

2
  in the variance. 

Since this coefficient is, for any particular (a,b) 

Saab + 5ab + sabb = ^ab + ^b + ^bb + V' tab + 2T"' - cp'V" 

and since we have both «p" and cp^' at our disposal, we can exactly 

annul two different coefficients by a proper choice of 9.  (How 

effective such a transformation may be will depend very much on 

the particular example,) 

The examples considered later on indicate that the 

apparently simpler, and certainly less justified, approach of 

trying to annul some of the sab alone is not likely to be rewarding. 

If we are to gain in simplicity of formula by transforming the 

response, we must consider third derivatives as well as second 

derivatives so as to obtain and use t ,. and t 
aab     abb• 

  - ■■    .  ^ 



1Ö. The exaMples 

If we consider transforming the response In the first 

example, we find that we can eliminate the main correction terra In 

the formula for the variance. Instead of 

var z ^ 2 i^  + 0.01 2 T^^2 T21
2 

we obtain 

var z ^ 2 Ta + 0.0005 ^21-1^1-1^2^21^21-1     ^1     '   '   '  + 

If we had needed to reduce this term, the gain would be striking, 

even though the simplest transformation uses the cube of the 

difference between the time delay and a constant larger than any 

likely delay. 

Transformation of the response in the second example 

again reduces the first correction term in the variance by a 

factor of 50 or so, but again this reduction was not badly 

needed.  The power transformation which does this is proportional 

to 

3/T| 

interestingly encagh, 
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¥ DETAILS OF PROPAGATION 

19. Cocumulants - definitions and properties. 

The covarlance, defined by 

cov (x,y) »■• ave xy - ave x ave y « ave (x-x) (y-y) 

and satisfying 

(l) var x+y = var x + 2 cov (x>y) + var y 

(ll)  var x = cov (x,x) 

(ill)  cov (x,y) = cov (y,x) 

(iv)  If y Is (statistically) Independent of x, then 

cov (x,y) = 0 

(v)  var 2xa = 2a2b cov (xa,xb) 

(vl)  cov (Zxa, Zyb) = Sa2b cov (xa,yb) 

(vll)  If v Is Independent of x, y together, then 

cov (x, yv) = cov (x^y) ave v 

has stood beside the variance for a long time.  Similar partners 

for the higher cumulants do not seem to have been provided, though 

they will prove very convenient to us. 

We may define the coskewness, a function of three 

arguments, by 

■ ■/■'■£ 

cok (x,y,z) = ave (x-x)(y-y)(z-z) 



(we use "cokM because "cos" is preempted) and can show directly 

that 

(i) ske x+y » ske x + 3 cok (x^x^) + 3 cok (x,y,y) + ske y , 

(il) ske x = cok (x,x,x) , 

(lii) cok (x,y,z) « cok (x^z^y) =....= cok (z,y,x) , 

(iv) ir z is (statistically) independent of x,y, together, 
then cok (x,ytz) =0 

(v) ske lxa  = 2a2b2c cok i^,^,^) 

(vi) cok (Zxa, 2yb, ZZQ)  = 2aVc ook (x^y^zj 

(vli) if v is independent of x,y,z together, then 

cok (x^zv) = cok (x^y.z) ave v 

in entire analogy with the properties of the covariance. 

Moreover, we can define the coelongation, a function of 

4 arguments, by 

*. 

coe (x,y,z,w) = ave (x-x)(y-y)(^-z)(w-w) 

- cov (x,y) cov (z,w) 

- cov (x,z) cov (y,w) 

- cov (x,w) cov (y,z) 
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and can show ölrcctlj? that 

(1)  elo x+y = elo x •*- 4 coe {x,x,x,y} + 6 coe (x,x,y,y) 

(11)  elo x = coe (x^x^x) 

(111)  coe (x^^^w) - coe Cx,y,w|2) - . . . = coe {w,2/y. x) 

(lv)  if w Is (statistically) Independent of x.y^z together, 
then coe (x^y^z^w) = 0 

(v)  elo 2xa = ZahZcZd  coe (^   ^   ^ ^ 

(vl)  coe (ZV 2yb, 2Zc, 2Wd) . ^^^^ coe ^^ v z^ Wd) 

(vli)  if v is independent of x,y,Z, w together, then 

coe (x,y,2,wv) = coe (x,y,2,w) ave v 

again in entire analogy with -ie properties of the covariarce. 
20- Explicit formulas in two rorms 

By using x-x, y-3F e^c, we have kept the defining equa- 

tions for the cocumulants moderately short. There will at times 

be something to be gained by writing these expressions out in 

detail.  They appear as follows; 
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coJc C«#f#«|  - eve jtyz -  (ave x}Cave ptj  -  (ave yJCave xz) 

-(ave 2)(ave xy)   + 2(ave x){ave y)(ave  z) 

- ave xyz  -   (ave x)(ave y)(ave z) 

-(ave x)   cov  (y,z)   -   (ave  y)   cov  (x,z)   - 

(ave z)   cov  (x,y) 

cje   (x^y^z^)   m ave xyzw -  (ave x)(ave  yzw) 

- (ave y)(ave xzw)   -  (ave  z)(ave xyw)   -   (ave w)(ave xyz) 

- (ave xy)(ave zw)   -  (ave xz)(ave yw)  -  (ave xw)(ave yz) 

+ 2(ave x)(ave y)(ave zw)   + 2(ave x)(ave z)(ave  yw) 

+ 2(ave x)(ave w)(ave yz) + 2(ave y)(ave z)(ave xw) 

+ 2(ave y)(ave w)(ave xz) + 2(ave z)(ave w)(av3 xy) 

- 6(ave x)(ave y)(ave z)(ave w) 

= ave xyzw - (ave x)(ave y)(ave z)(ave w) 

- (ave x) cok (y,z,w) - (ave y) cok (x,2,w) 

- (ave z) cok (x,y,w) - (ave w) cok (x,y,z) 

- cov (x^y) cov (z.w) - cov (x,z) cov (y,w)      i 
- cov (x,wj cov (y,z) 
- (ave x)(ave y) cov (z,w) - (ave x)(ave z) cov (y,w) 

- (ave x)(ave w) cov (y,z) - (ave y)(ave z) cov (^w) 

- (ave y)(ave w) cov (x,z) - )ave z)(ave w) cov (x,y) 

The apparent lack of symmetry In the basic definitions 

can be removed by rewriting them In the forms: 

l*^iiiMI| 
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ave X5' « Iüü x)(ave y) + cov (x#y)f 

ave xyz » (ave x)(ave y)(ave z) 

+ (ave x) cov (y,z) + (ave y) cov (x^) 

+ (ave z) cov (x,y) -f cok (x.y^z), 

ave xyzw = (ave x}(ave y)(ave z)(ave w) 

+ (ave x)(ave y) cov (z,w) + ave x)(ave z) cov (y.w) 

+ (ave x)(ave w) cov (yiZ} + (ave y)(ave z) cov (x,w) 

+ (ave y}(ave w) cov (x.z) * (ave 2)(ave w) cov (x,y) 

+ cov (x,y) cov (z,w) + cov (x,z) cov (y,w) 

f  cov (x,w) cov (y,z) 

+ ave x cok (y,z,w) + ave y cok (x,z,w) 

+ ave z cok (x,y,w) + ave w cok (x,y,z) 

+ coe (x,y,2,w). 

Extension to higher order cumulants is now obvious. 

These formulas appear messy, although they are really 

quite simple.  A different notation, which is not as convenient for 

working with covariances, coskewnesses and coelongations as tools, 

shows this more clearly. We use it here for immediate expository 

use only.  Put avB X . £ cov (x,y) ="7^7 cok (x,y,z) = J^7 

coe (x,y,z,w) = x,y,z,w, then 

*. - 
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■ xyz  -2    aEc+2xy2 

x^y^^w - xyzw - I    a Wä + 2X    &S cE - 61 J z yi 

xy « x y + x,y 

xyz  = x y  z + x y,z + y x,z +  z  x,y + xTyTi 
* —. 

= x y z + 2    a b^c + XSY,Z 

xyzw = xyzw + Z    aF^TS + Z    aTFBTd + Za FT^d + x,yj2,w 

where 2 has the same Interpretation as elsewhere In the memorandum, 

and a,b,c,d Is some permutation of x^y^z^w. The formulas are much 

more perspicuous In this notation,  (if the notation were to be 

extended, var x = x, ske x =-■ x, elo x = ? might be used.) 
21•  Independent centered monomials 

We next consider the cocumulants of expressions of the 

form wa
1wb

J where wa and wb are (statistically) Independent with 

moments 

0^ Ga^ ^a^a^ raV Gaaa5 and 0> %*'   W' ^>  %^ 

respectively.  Using the available relations, these can be easily 

reduced.  Thus, for example. 

- ■ ■ 
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f-7 

■ 

t 2     % 12 2 
'a^b»"! wb a    o 

ave wa^ ave w^    -  (av® waH.   .   •) 

>aaa3crb2 

since ave wa » 0.     Similarly,  dropping at once terms which 

clearly vanish, 

cok  (wa,w w, , wa
2w, 2) a»wawb'  "a "b * ave wn vfy, a    D 

2     2 - ave wa wb    cov (wa,wawb) 

" VaVb3- ^aV^O) 

By similar calculations we reach the results shown in Tables 6 

and 7, as well as 

coe (wa,wa,wa,wa) -  (ra-3)^ 

coe (wa,wa,wa,wb)  • 0 

coe (wfl,w ,w ,w 2) - iG-kyJaJ a'  a'  a' a a "'a'  a 

coe Cwa,ws,wa,wawb) - 0 

509  ^a'wa'wa'wb2) " 0 

'. 
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TABLE 6 

1-f-m  J+n   , , 
must be 

m . n 

Table of coefficients by which o„ ab 
multiplied to obtain the  covariance of vr      w. ^ with w '" w, u when 

a  o      a  D 

wa and wb are (statistically) Independent, and each averages zero, 

S Ü wa 
w«wv, a b Wb 

wa Je 0 
\ 

0 0 

wb 
0 1 0 0 7b 

"a? ya 
0 V; 0 0 

wawb 0 0 0 1 0 

«b
2 0 ^b 0 0 V1 

«a3 ra 0 0 ~y 
a '^a 0 0 

2 
a b 0 1 0 

^a ^b 

wawb2 1 0 ya ^b 0 

V 0 rb 0 0 Gb^b 

«a4 Ga 0 - 0 0 

a b 0 
^a 0 ra ^a^b 

2 2 
a b 

3 
w wb 
a 

ya ^b ra'1 Vb r^1 

y
b 0 Vb rb 0 

v; 
a 

a 

G -7 
a 'a 

wx 0 Gl 0 0 

Note.  With appropriate subscripts var w = a2,  ave w3 = ya3, 

4    4     R    R 
ave w = fa , avs w3 = Gcr. 

^:«;.!;;S: 
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TABI£ 7 

Coefficients of a  1+m+Pf7 J+n+q 
a    ub In 

When wa and wb are (statistically) Independent and 

each averages zero, 

1    __2 1 w 
a wb ^a2 a b ^a3 

2 
a    b wawb2 w 3 wb 

1 

wa    wa ^a 0 V1 0 0 Ga^a 0 
^a 0 

wa    wb 0 0 0 1 0 0 ya ^b 0 

wb    wb 0 
^b 0 0 V1 0 

^b 0 Gb^b 

1 i 

wa    wa2 V1 0 G^-27 
r     /a 0 0 

a      ab 0 1 0      7 a " ^b 
2 

a      b 0 0 0 
^b 0 

2 
Wb    wa 0 0 0 

^a 0 
) 

wb    wawb 1 0 /a    't r1 0 
- - ■" ■ 

^ I" 

wb    wb2 0 rb -1 0 0 Gt r% 
Note,     with approp rlat e  subsc rlnl ha 

""■ J 
var w = a , 

ave w^s 7a3, 
4   k ave w = ro . 

ave w-^a Ga^,. 

; ■ ' t ,     : • . 



22 

Suppose that 

2 = h(w2^w2>-••*wk} 

where ave w = ^ «^^ i-w« ,. ave Wa o,  and the Ka are Independent. Then the usual 

Multiple Taylor Serlee for z can he „ritten m ter™ of the derlva- 
tlve values at (0,0,...,o), „hlch Is the average point,  such as 

aab 
^VH 

h(wI,w2,...v,- ) 

(0,0,...,o) 

In carrying out this development we will make full use of 2* as 

used above and discussed In Section 38. when we do, the Taylor 
series becomes 

+  ShQw a a 

+ I Zhaa
wa2 + 2\b"a«b 

3.1* 
+ 5 Zhaaawa + 1  2*haabwa2wb + 2\bowawbwc 

+ Ä ^aaaawa4 * I 2\aab«a
3"b + I ^haabb„a

2„. 2 T 2 

+ I 2,haabcwa2"b"c + 2\bcdW0«d 

+ .   .   . 
«here the  symmetry of hab and h^ in a and b    la t0 be reoognized 

in interpreting 2 . an, where all  the  coefflclents oan ^ 

checked by direct  differentiation-  a<„ 
lerentlatlon-since  each monomial  appears  once 

and only once. 

--•s 
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Frora this expansion, sllgntly extended, we 1 MS€< ay 

"deduce 

I 

ave z ü h(0,0, .....o)  +Ä£h    a 2 + i- Zh        y a 3 

'2      aa a        i ^aaa 7a0a 

4 1 
+ ^.   Sh. 

aaaa a a 
1     ♦ 2     ? 

r.0„    + if 2 haa>,h  ao  ^    + —T^?r- Sh 'aabb üa öb    ^ ~~ir^~ Q c ' aaaaa a a 

■f T? ^Xaabb  ?aca3%2 + • » • 

If we think of writing out the variance of z In terms of 

a double sum of covarlances of Its terms, and use Table 6,  we see 

that we have 

2     2 
var z = 2h    a a    a 

+ Sh h    > a ' 
a aa'a a 

+ 5 ^VaaaVa" + % *hJira-l)^ aa  v a a 

2, 2     2 
+ 2 ^hahabb+h

ab ^aab^)   ^a^b 

+ fw Zh„h 
12      a aaaa a a 

G
Qcr 5 + ^ Sh    h       (G -7  )CJ 

5 

«■ «        o      aa aaav a /ay  a 

/I + 2 (^hQhi ^nanaabb + ?haahabb + habhaab 
+ IhaaabV Va\ 

+ terms of order ^ o 

Where the symmetry of tht#whole coefficient of a^o^  Is to be rec. 
ognlzed in Interpreting 2#- a not unmanageable expression. 

Writing ske s as a triple sum of coskews of the terms of 
z, and using Table 7, we find 
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sice g • Ä.. y^tf"*' 

ab    a    b 
+ I ^a »zz^z-V aa

4 ♦ 6 S ^V 

+1 ^Wv»*Ks +1 «y^v^.N5 
a 

+ 3^V6b
2(ra-i) .a

3
8b

£ 

6 
+ terms of order > cr . 

The same approach to elo z  leads to 

elo z  . 2ha
4(ra-3) oa'

, 

6 
+ terms of order ^ 0 • 

23- The generalized propagation formulas 

The formulas in the last section were derived on the , 

apparently equally important, assumptions that the w were inde- 

pendent and had average zero.  Suppose them independent, but their 

averages not to be zero, and put 

S'o =! w„ - ave w , a   a      a * 

then the qa's will satisfy both assumptions, and the formulas will 

apoly in terms of the qa, provided we expand around q = 0, i.e. 

w = ave w- .  Thus if 



i 
? 
■ 

r«i3 . 

c 
f5 #^ 

a 

5 5 c; 
öaca    * ave  qa     = ave   ^w *ave w  ) 

and If 

ab 

+ m 2haaaaa 
aa°a

5 + 12 2\aabb  Va V 

+ terms of order > a6. 

; 
3 ^ 3 

^^    ■ ave qa
J = ave  (wa-ave wa) 

ra0a     ■■ ave qa    * ave   (wa"-ave wj^ 

; 

a2 
-"g^-^T— h(w  .w ,   ....w  ) 

a D *     v.'r IV 

(ave vi13   ave w2J _., ave w. } 

and so on, then the formulas for var z,   ske z, and elo z will hold 

without change.  A small change will be needed in the formula for 

ave z, and It will become 

ave z « h(ave w^ ave w2, ..., ave w ) 

1 P 
+ f 2h a a ^ c  aa a 

: 

+ T- Zh   y  a ^ 
o  aaa /a a 

- ' ..-.■:■ . ■■ ■   . . .■.:-.:-- 
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DETAILS OF gIf!3T ECAMPI^ 

2iK  Derivatives and preparation formulas 

We have, writing z for the delay 

2 -hCw^...^) =yi7c;+/L^+ ... ^i^- a 

Öh 1   /C21 ^h       T    rtr 

21 

ä
2h 

^-1^21    4 ^i^p 
21 

ö2h   _  1    ' C21 

and so on. 

We wish to Illustrate the effect of making, or omitting 

various transformations. But we would avoid needless complexity. 

So we shall treat the case where each section has the same design 

value in considerable detail, and then treat the general case by 

the quicker methods. 

If all sections are to be alike, we may select units of 

inductance and capacitance such tha. :he design value of each 

element is 10. This means that aa = 1 for a component with a 

standard deviation of 10* of its nominal value„  Hence values of 



c   as large at 2 are possible but not unl±kmiv    ^4% **my uvx,  yriiijctiy, while values 
between 1  and 0.1, or possible sl^htl^ m**%% P  Ö61D1'' SJ-^"y smaller may be regarded as 

Hicely.  This .eans that we can draw relatively fair Impression. 

from numerically stated formulas Involving different powers of a  . 
With this choice., we find a 

ha = 0.5, 

haaa = 0'00375, 

haaaaa " 0^0033 % 

'0.025, 

aa    01,025, 

Wa * " O-00094 

ab 

,0, 

,-0.00125, 

h . = aao 

If (a^b) = (21-1,21) or (21,21-1 
) 

otherwise 

If (a,b) = (21-1,21) or (21, 2^^ 

aabb 

aaab 

,0, 

(n.. oooo6+. 

0, 

i0„00019. 

to, 

>0.00001, 

otherwise 

if (a/b) = (21-1,21) 0^ (21, 21-1) 

aaabb 

otherwise,, 

lf (a/o) = (21-1,21) or (21, 21-1) 

otherwise 

lf (a'b) = t21^'   21) or (21, 21-1) 

,0, 
otherwise 



.. 
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hence 

4 - °-V> hahaa - -0.0125.  hahaai  . O.0O187* 

haa . 0.0006^, hahaaaa . ,o.ooo47% haahaaa - ..00009+ 

' -.   -■ „,     ^ 0,00t> 
a aa 

ha - 0.0625,  lA      . 0.00312* 

% - 0.125,  hfhaa H -0.00625,  h^ . 0.00034-,  ;, h f . O.OOO31T 

a aa 

and, provided Ca,b} = (21-1, 21) or (21, 21-1) also 

bahabb + hab + "aab^ " " 0-00062+ 

t hahaabb 
+ 2 haahabb + habhaab + I haaabjlb = 0-00ü03 

6hahahab = 0-0375 

3hahab Ä 0.00094" 

3 2 
f hahabb + 3^^^ + 3hahaabhb « -0,00236, 

these expressions vanishing for all other pairs. We can now mte 

down the propagation formulas, finding 

ave 2 « 10j - 0.012«^ 2a
2 

a 

+ 0.00062 Zy ß - 0.00004 zr a4 
a a a a 

* 0.00002 Zü2ulü2l 

+ 0.00000 26  a?  -  0.00000 Z(y^   ,0      3ff 2 2 3 
a a Ä^72l.l021-la21  + 721a21-la2l) 

0.0 



var z  m 0.25 ZU 
a 

-0.01250 Zy a1 + 0.00062 ZV  a4 

* a.   B, 

^0.00016 ZOvDa* .  0.00062 ^^^gf 

-0.00004 20 a^ + 0,00002 2(G -y )a5 
a a * a 'a' a 

^0.00003 S(r2i.l8ai.f^ + .2l02J.f0 3) 

ske z = 0,125 2 y 3 

- 0.00937 2(ra-l)^ + 0.0375 So21.fa21
2 

+ 0.00047 Z(0a-7a)a5 + 0.00023 X(Q -27 )a
5 

a  a a 

+ 0.00094 .((^.,-1)^.3^ +,{r21-I)a21.^23) 

- 0.00236 S(.21.lC.a.30a2 + 72i0£i_i2c23 

elo z - 0.0625 z(ra-3)4 +  O.OO625 2(0^4^)^ + . . . 

where the Index a runs fro. 1 to 2J and the index 1 runs fro. 1 

to J. We can simplify these somewhat, with the 

quoted In Section 10. 
results already 

. 



25. Tranaformlrsg individuals 

If now we wish to introduce V
9

B whom  partial «ffect« will 

be llnearj we have only to look at 

to see that we should take 

v 21 _-,  "A v l^-i _2' 

V21 = A ^C21 ' 

and if we choose A so that the first derivative value is unity, 

this means 

^21-1 -syioyi^ 

v0, =2/IQ yc0. , 21 21 

^L21-l C2i TO^I-I V21 

whence z « g(v;1 fv2,..., v2 ) 

= 4 (viv2 ' vZvk  + * + V2J-1 V2j) 

«■*.. »>. 

M ■■ 

. msm 
#■ 

/ÄSv^^^ 
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and 

g2i-l "ro^l "f 

S21    SirOV21-l   * 2   * 

s2i-l,21   =40 

all other derivative values vanishing.  (We note for later use that 
t2i-l,2i =: 0'1  with a11 other t's vanishing.) 

The coefficients which appear in the propagation formulas 

when (a,b) = (21-1,21) or (21, 21-1) are, omitting those which 

vanish. 

6sasbgab ^m =5%- 0-0375 , 

3Sagab2 s= 3^0 " 0-00094 

and the resulting propagation formulas are 

ave ^ = ioj + no other terms 

var z « 0,25 2a2 a 

+ 0.00062+ 2a2:L.
2a2

2 + no other terms 

■■■■ ■■.;■■•■■■■) •..«.■   .^n«(i^>-$*- -«■-■   -  ■ ■   ■■'-  :■-.. 
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/a a 

- 0.0375 2^.!%* 

t 0.0009^ ^((^.rD^.^C^-D^ja^.^ 

+ exactly two sets of terms of order a6. 

2 
21 

elo z = 0,0625 2(r -3)a v a ^/ a 

+ a finite number of terms of orders c6  to a8. 

26»  The general case 

If we return to the general case of a deiay line made of 

possibly unequal sections, we have (with a change In scale for the 

va for convenience). 

Z - vlv2  + V4 + • • • + v^.^j 

with 

and 

V21-l " ^21-1   > 

V21 * ^oT* 

^-^ - -^rk21 1 

21-1621 v21v21-l fci 

m 
«wwrn**-tfe       ,■/ 



■ ^ 
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where  t.   is the t''»,"e» d^lav ^onfrihtit-o^ km  ru^  **,\~ **    -*.* 1 —  ucxei/ cuntrioucea Dy cne 1th section,   all 

other t's vanishing,     'rhe resuitlng formulas»  mm 

T21-l  =  CC2:1)  varyi^Y * 

i 

2 T2i= fL2i-i^ var^2r~) 

ana 

ave 2 = 2 t.     , 

var z = s T a 

+ 2 
2 2 

'21-1     T2i "   r^— * 

ske  2=271^ ^a a 

6   -r 2 2 

-f v       1T21-1     T21 

* 2 -lilZ^^^l-l^^-D^JT,,,,^ 
t F tl 

21 

+ terms of order > x 

s-^^-'.--/':.^:;.-:.:^ i     . ■.■....;.„,. - 
■'■,';.*fes'^ii"-M-.  ;r<5^*?Ö**WS**|Cä?Vi 

■ ■■■i;-,'-v.\.j.;s- ■•■•::'--:.:.\M:;,■.■:■.-;   . 
■ "   ■■■■■    ■ ■ ./    ;.      . 

- 



"I I  ^—^^^^ 
11 '"  "  ^—■"^^•^■B^—^^^-i«" ^    i™      " ^■^^^■•^ «■^^PBBi 

elo z - 2(ra-3)Ta' 

- VI-9 - 

+ terms of order > T . 

If we Introduoe coefficients of variation by 

H 21-1 

T21-l    v/g^AaT/I^; 

1     ^21  ^L21-l 

ri 
^21-1 /varV^ 

21 
21 

^     ^1-1 ^21 

these fall Into the form quoted In Section 11. 
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DETAILS OF 5ECUND EXAMPLE 

^*  The response 

We next consider a symmetrical Tr-sectlon attenuating 

network operating between equal Image impedances R. The attenua- 
tion can be shown to be given by 

,   *B 
RARc" 

where Rg Is the resistance of the series arm, and RA and Rc are 

those of the two shunt arms. The Ideal values of RA, Rg and R are 

2 = 1 + 

luvm uu ce gaven oy 

R^ = R a+1 
a 

«B^ = R 
a2-! 

where a Is the design attenuation, 

If we place 

R
A = H £r O + W

A) 

the attenuation becomes 

z = a (l+W.)"1 (l+W^)'1 'A' 1 + W. a-1 
r. a+3 Srr + (Vwc) ^PTI 

+ WB (WA+WC)-|^ + W.W, ^ti^i + WflWrW, ^ 
4a' 

and we are almost ready to find derivatives 

■A"C"B -^2" 

■    -'■■ ,^":^---,^-./:-.;,:x.-,H ■M:^ .'JT   ; - ». ^*,. 
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Accurate differentiation will however be awlfter and 

easier If we rewrite this expression as a sum of products of 

functions of the  single l^s,   namely asj 

z a a ^-1 1     ..       1 a+3       WA 
I+w^   I^c^ 

+ aH?3"—^^BT^ + a 2^)14:   1 ^K^.Ljj.TnA      J.+W; 

+ a a+3 1     *k u-1 V, 
nzm l-fWA  1+WC    + -2— -l+w^- ^B -IW, 

a-1 
2      IW *       w      /C      + v^a-l        WA        WC 

■WA   
W

B-T^r-+ —45—  iwr  m 

a2-! WA WC 
^ l+W^ "B  l+?~ 

and note that the values of the successive derivatives,   at W *= 0, 
of  (l+w)"1 and W/(l+W)  are 

order of diff»n: 

(1+W)"1 

W/(l+W) 

We thus obtain, writing 

as follows: 

0 1 2 3 4 
1 -1 2 -6 24 
0 1 -2 6 -24 

2 = «(v V v . 

and introducing 

■ ■■  
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which satisfy 207 « 52, 

"A = "C " -e' «AA * HCC = ^'   HAAA - Hccc  --& 

"AAAA = Kcccc = 2'*' HAMAA = HCCCOC = -laoß 

«AC = y-  *UC - *ACC ' -*>'   «MOC  ' *?'   »AMC  = HACCC - 67. 

HAAACC = -12'''- 

Hg = Sß 

HAB = «EC = -5- HAAB - XBCC  = 26, HAAAB = ^^ = -65, 

%B = HABB = «AAB£ " «BBC = «BBOC = «ABBC " 0 

We are now almost ready to „rite down the generated propagation 
formulas. 

with th  " !! COnVenlent t0 flrSt eval-^ certain coefficients, 
with the results given m Table 8. 

.'.mmmmm^-'     <    .        ..,.    . „ ^t,.«,       ,„.,.,,„   „.. .... _,„.. WÄ , „ _ ^mmmmmmmmmmmmmm    . 
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TABLE 8 

Values of Coefficients In the Second Example 

Coefficient ab^AB or CB ab=EA  or BC  ab=AC orCA 

«aHabb^abHab^ B2 

5HaHaabb+5HaaHabb 

■"Vaab^aaab1^ 

^«bV 

3H
a

Hab2 

kXbb^HaaH^^+SH^^Hb 

H2 

a 

a aa      12 a aaaa 

■IH H        = - 1H    R 
3 a-"aaa ^"aa^aaa 

in   2 
4 aa 

«a3 

2 a    aa 

2 a    aaa      4 a aa 

5"+4ß5 5 +4ß5 72+4ß7 

-252-4ß5 0 ~6ß7.2y2 

12ß25 12ß25 6ß2r 

2 
-3ß5" 6ß52 

-3ß72 

-24ß26 12ß25 

Value When 

2 
~13ß 7 

a=B &_ =A or C 

4ß2 
e2 

0 2 
-2ß^ 

0 2ß2 

0 ß2 

8ß3 
-   ß3 

c 3ß3 

0 -^A3 
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Using these results,   the formulas be< ome 

ave 2 * a 

2     2 

C"C 

+   .   .   . 

^    + aP^) var z = ß^  (aA- + 4r 

" 2ß   ^AV* 
+ ^p^-3) 

+ 2ß2 ^ VA4 + ^c^c4) 

+ ß' ^A-aK4 4 ^v1)^4) 
*  (52 + 4ß5)aB

2  (aA
2 + a,2)  +  {/ + 4ßy)aA

2ac 

2ß2 (VA5 + ^c^c5) 
-  2ß2 

(aA-vA)eA
5 + (Qc-yc)0c

5 

-   (26    + 4p6)(rAa.3 + rcac3)oB
2-(2>

2.6ey)(rA0A+rcOc)0A2Oc 2     2 

»«Si^Si^^äfiä ^^^i%ja,l3»S-aW^'^t '■■  u f-i.,1 
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ske 2 « -ß^ (r«a. 3rn^    4 y^c } 
B B 

+ 3ß- 
u (r.-Da/ + (rp-i) 

+ 1^25(«TA
2 + ac

2)aB
2 + 6ß2

rOA
2cjc

2 

- 3ß- 

- 3ß' 

.1 
(VAK   + (ßc^c^Vj 

^A"^A^A    +  (V^cK 

-  3ßB' 
'C ÜB 

.5 

mm 

- 13ß27(7AaA+r0»c)<rA
2<Jc

2 

2  2 
0C 

elo 2 = ß 

»   a   «   « 

4 
(VB)V + l6 (rp-3)C + (r^3) B 

- 4ß' 

-♦-... 

(GA-Vä)Oä
5
 * (0n-4ro)a 5 'A ^^A/ÜA C ^C/UC 

To bring these results into a more perspicuous form, 

we change to a more natural scale by putting 

^NMIl 
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WA * 0-1 WA' WB 't1 V wc a 0-1 WC 

2 -  ^V WB' WC^ » ^V WB' ^ 

so that the standard deviations of the w'a will be of the order 

of unity or somewhat smaller.  Notice that ß, y  and 5 are sub- 

stantial fractions of a,   for example 

a: 1 2 5 10 UB 

ßi 0 0.17a 0.33a 0.4la 0,50a 

7: C 0.02a 0.11a 0.17a 0.25a 
5: 0 0.08a 0,27a 0.37a 0.50a 

so that we may, roughly, think of a, ßs y  and 5 as of about the 

same order. The resulting formulas were already given In Section 12 

28. Trans forming Indlvlduals. 

If we revert to the original expression for the trans- 

mission 

z =1 + -a? «B + -r «B j^ +1-' + i U. * J 4. "B 
: 

and consider the effect of varying RA, R^  or Rc alone, we see that 

z Is linear In l/Rc. Thus the appropriate transforms for R. and 

Rc arise by replacing resistances by conductances, while the ap- 

propriate transform for Rg is the identity. 

:■■—■    ' , .   /     .■■■■■ 
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If we place 

i -» 

% ~E4tr- ^ +vj 

I        1  a-l 
Rc      R a+l (I + V, 

then the attenuation becomes 

z  = a + l^ ^V2Vvc) 
2 

mUllj VAVC  + ^^l    VB^VVC) 

+ Üfäh     VAVBVC 

or,   in abbreviated notation 

z  = * a + ß(VA+2VB+Vc)  + rVAVc+öVB(Vvc)   + ,vAVBVc 

and if we write z = f(vA,  vB,  vc)  then 

we have 

c^^äsmimm^mm&A^mam^m^sm~>^^^^^ 
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fA - fc « ßt   fÄC - y 

fB = 2ß'   fAB m  rBC " ^ 

1 

I 

ABC 
m   y 

while all other derivatives vanish for VA = VB = Vc = 0.  Thus the 

generalized propagation formulas reduce to : 

ave z * a 

+ . 

var z « e2K2 + 40B
2 + „/) 

+ 62(0/ + 0 s,   a +  2   a   £ 
'C   ^B A  WC 

+  . 

ske z ß3(7AaA
3 + 8rBaB

3 + rcac
3) 

+ 12ß25(aÄ
2 + ac

2)aB
2 + 6ß2

7aA
2ac 

+ 3ß62r(v.l)a 

+ 3ß72   f(rA- 

+  (rc-l)ac
3) 

i)^ + (rc-i)o 

JB 

2_ 2 
0A   ffC 

+   .   .   . 

elo z « ß (rA-3)aA
4 + l6(rB-3)aR

4 + (^-3)0^ B -^^B     '   ^C  "^C 

+ 

: 

^S^B*WI!9ÄS^aiB^^liöl^«8Btfei;'.;i..- 

«Jpa^SW^jKi^^! pwiMii 
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With the possible expection of the formila for eke z,  wher^ the 

reduction in number of terms is, though still large in number only 

about half of the number present1 the gain over each of the previous 

formulas is notable. 

Rescaling again by writing 

VA=0-1 VA 

VB =0.1 vB 

vc -0-lvc 

we obtain the formulas already given in Section 12. 

««wiiiiip^atj 
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DFTA1LS OF TRAMf.r" l^ßC:   r; :=F RE. 

i 
i 
: 

Strategy 

As indicated In Part II, the attack by transformation can 

Involve both transformation of the Individual [component] variables, 

which is naturally directed to annulling the higher unmixed deriv- 

ative values, and transformatlon of the response [system] variable, 

which might naturally be directed at either increasing the normality 

of the response distribution or at reducing the size of some of the 

terms involving mixed derivative values.  It appears that trans- 

formation of the individual variables is not only easier but rather 

more efficacious.  Thus we will be wise to plan to transform the 

individual variables first. This will be true, even although an 

incautious transformation of the response would disturb the desir- 

able situation obtained by transforming individuals, since we can 

be cautious, and arrange for a compensating transformation of the 

individual variables to accompany the transformation of the response. 

We thus contemplate the following sequence cf situations; 

z = h{y^,  w2, „ .., w, ) 

^perfectly general 

,z = &i^i>  v2, ..., vk) 

v a function of w 

'saa ! gaaa « 0 

J       -, m^^^.k^ ■■■■■■■■■■.-■■■     i^ÜJg atwaWaWBh«B *^^■«»■»aT-ahf Wa-^fr '■'■'" '  • i . .     . , 
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ij  « fCuj, ug# 

p s: tl«l 
va = va(ua} 

'f  = f v aa   aaa • 0 
• * 

Here we may as well require that the first derivative values of 

ec h  v with respect to w , of y with respect to z,  and of each 

va with respect to u all be unity in order to keep all leading 

terms the same. We naturally denote the latter two derivative 

values, evaluated at the corresponding average points, by qp' 

and V '. We may do this because we are dealing with functions 

of single variables.  We shall use cp", cpMI, <plv, V ", V t1%
$  y 

lv 

a   a     a 

for the corresponding higher derivatives. 

We have already discussed the first step in some detail 

(Section 6ff.) so that we need here to be concerned with the sec- 

ond step.  If we are to carry out the second step in practice, we 

need to be able to find out about vQ(u ) and about f^'s in terms 
a a 3LO 

of cp (presumably in terms of the derivative values of cp) and the 

gat). This we shall do next. 

30. Transfer formula details 

Suppose now that, starting with 

2 = g^, Vg,  ,.., Vk) 

■ ■■.;,■::;.:,■  i;.. ■.■:.■.■.. , 

-■*—'' ^     ,      , ;   . 
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where gaa = gaaa • gaaaa « _ ^ = Of we transfoiTn the response by 

y = (p(z), and wish to make transformatIons on the Individual vari- 

ables v    m  v (u.) so that in '  a   ax a 

I 

y - «p(g(v1(u1), v2(u2), ... vk(uk))) = f(uv  u2>   ... uk) 

we will have faa = faaa = faaaa = ... = ö>  We sure:Ly need to have 

formulas expressing the fsuccessive and) cross derivative values of 

f in terms of the successive and cross derivative values of c and 
I 
!the derivative values of cp.  Information on the functions v (u ) 

ax a' 
will also be helpful. 

There is no loss of generality in assuming that the first 

I   derivative values cp«, v^, Vg«, ..., vk' are all unity.  With this 

convention, the higher simple successive derivatives of f are: 

fa = **  «a^' = 6a 

faa = ^'^a^')2 + ^ ^(^^  + cp« gava" = cp" g^ + gaa + g^" 

faaa Ä ^'^v,')3 + 3^
( gaaSa(va')

3 + 39" g^a'V 

+  3 gaaV + Va"' 
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'a a   * a 

tiaa   A      a aa   a *   a n 

Bq)" S^(va
tt) v    Da a    a 

1 -4- 

+ 6', eaaa(va,)dva" +3'' Saa^a"' 4'>, Saa^'^"' 

+ ^gava
iv + 39"ga^va')

4 

'1V 4  +69'" gaagf + 6<P"' g^v^
1 + 4f" gai,aga 

+ 18»" gaagava" + 3?" gf(va")
2 + 4?" gfv '•■ 

'a a 

+ g aaaa + 5 gapa
v
a" 

+ 3 fen«(vQ")
2 + ^ S v "' aea a     aa^ a '     ^aa a 

+ Sava
1V + 3V gaa

2 

If now we set these successively equal to zero, starting with the 

second and using g  = g 
-aaa "" saaaa 0, we obtain 

0 = (p" g -f g v " ^ 6a  6a a 

0 =  g"' g^ + 3cp" S*va"  + g^V» 'a a   0a a 

0 = <P1V 4  + 69". g3va" + 3(p
,,g^va")

2 + 4T" gfv-M + g „ lv 'a a a a 

and similarly 

■■.      . '    ..        -; 
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... , 
... 

-    v * * * - ^ 

0 « #V €« luff g     / S_¥ 
AV 

O« a a a a 

a a      a s    a 

whence 

V = -(g.cp"). a 

-zU"' - 3*uVa
u 

-(g^"')   +  3(gaq)"): 

grc-cp"» + 3<p,•(p,,), 

lv = ^3 lv      .    2 ll±     „ v-     = -grcp a (fv2 6 ga^      va    -  3(P"Sa^a")     "  ^ ^V'1 
■i 

= -(g^1V)   +  10{zlv">){ea^)   -  15(gaq)")3 

= ga(-«PiV +  lOcp"»^"  -   159VV). 

and 

v        4r lv  „ 
va    = ga[-cp    + ISVV -»■ 10<p,"cp,"   -  lp5:<p,,»((p,,)? + lOSCcp")4]. 

with these  formulas  In hand,  we are prepared for the cross  deriv- 

atives,   and find 

;■'*/'*■,-"l j.-p...   *.   ■ ,.l:"-   , 
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ab      *    Ba a Rb b        *   öab a    I 

* 9" gagb  . 

^VaVb"*'' SabbW2 

y
    ^ab a    b 

<p"' gag^ + Sf" gabgb  + <P" g^b + <p" gagbvb" + gabb+gabvb" 

gabb + f" 8abgb + <P" gagbb  + g^CV"  -  9"»") 

fabbb " ^XVHSbV)3 + 3<P"' Sava•gbgbb(vb■)3 

+ 39"'gava^vb.vb" + 

+ '" ^a'Sbbb^b')3 + 3»" gava
,gbb(vb')(vb") 

+ 3V" g^gK'tVb')3 + 39" gabbgbva'(vb')
3 

+ 3''' e^^i^)3 * 69" gabgbVvb V 

+ <P   Sava •gbvb 

(formula  continues) 



¥XII^T 

m 
^•^^^•^^ 

-'^    &abb abb 

w    0ab a    b 

»*' sas^ + 3»"' gagbgbb +3^" gagbvb" + W gabg2 

* 9" gaSfeVt,"'  + CP" gagbbb + 3?" gagbbvb" + 3»" gabbgb 

+ Scp" ga>,g abBbb 

y   ^ao^b b        ^abbb      -'^abb b        Bab b 

- «abbb + 3<P" gabgbb  + 9" gagbbb  +  (Sq)1"  -  39^'^^ 

+ 3(9"'   -  <PV)gagbgbb +   (91V "   ^9"9",   + 39!,9!t9")gag^ 

.2       ,   tv 
Sabbb  + (V"  '  39,,9,,)gabgb  +  (9-V  -  VV"  + 39,,9,,9n)gag^ 
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f«ahh - /v(g v «i2 (gKv *)2 ^ ■mhh " f"    ^a'a^    ^b'b''    " *"* Sa CO)2 (gv.v. »♦i 

♦ t« gftvfl(gbvb«)2 + ^"» gaghgflh(v   »)2  (v   ')2 

b^ab^a 

+ ^" Sab^b^«1)2  (vh«)2 + 2*" g^g^v   '^(v   ')* aab&bv  a  '   v  b 

^""SabVa'^b'' 

+ CP"' «a^a''2 «WV»2 + < S==(vj)2 S>>t,(vh")
2 ,aav  a  '    Bbbv  b 

+ 8p" ga:(V)2 WV)2 

+ '" Sa^Xb^b')2 + »"" Sa^a') Vb" + »" 8aa<va''^ 

+ 2V' gjv^)^ gabvb" + ,;" gava Vb" 

-,- «P1 g    vv(v   »V2 + m» g ^^v   "fv   O2 
*   öaabbv  a ' v   &abb a v b  y 

+ ^ gfl«h(vfl
f)^ vh

M + (p« gDHvQV" ab¥a vb 

^ Sa^b + <P,,, «aagb + <P", S«^" + ^", &AJ 
2     „ 

,a0bva a bBab 

+ ^,, «kb+ ^,, sk%n + v ii + 2^- gaahg nrb ab •aab^b 

(formula continues) 

 '"■•■  
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* ^m «ab«bv
a
tt * ®m $mMm * ^n «^U* + 9n gyfe.^ " *aa0fc *«.   i- *ai3bb a 

+ '" «aa^bV + 2''" ea8abv
b" + »" 8a8bva"vb" + «aabb 

+ 8abbva'   +eaabvb" +S-V." ' ab'a      b 

0 «aabb  + *" Saabgb + 9" Sagabb * <*>" gaas 
bb 

+ 2** gj +  (cp".  - *V)ga*bb + ^",  " ^V'^g^gf 'aa'^b 

+  (4(P'"  - 3<pV)gagabSb + (cplv ••  Scp^qj^^'V^SaSb 

saabb + ^"^aabßb + «agabb)  + V' S 
2 

ab 

+ (4cp"'  - 3(PV) gasabgb + (q,^ - SV'VVVV'teaSto 

(In each case, the first equals sign Is followed by the general 

expression, the second by the result of using unity for cp', v ' 
a 

and v^, the third by the result of further substituting for 

va"' V' and V' and the l3LSt  by the re^u1^ of  using 
sbb * gbbb = 0' ^ 

These results are to be supplemented, when needed, by 

va *  ave v+u+i ä (^")uf 

+ §ga(-cp," + 3(p"(p") ul 

+ I4 g^(-«p1V + lOq)"' cp" 

•  •  « 

- 15(pr,(p"9") u a 

. 
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which Inverts Into the Taylor expansi pdnsion 

ua .  (va - ave va) 

+ ? ga ^"^a ' ave va) 

+ 5 gf q)",(va - ave va)3 

+ k4 <PiV^a " ave va)4 

+  .   .   . 

as It obviously should, since 

ua = ~ MsUve v1, ave vgl ..., va. ..., ave vk)) 

-q)(g(ave v1, ave Vg, .,., ave va, ... ave vk))j. 

When the formulas giving fs In terms of g»s are trans- 

lated Into formulas giving s's In terms of t's, we obtain the 

formulas already given In Section 14. 

31. Improving normality 

We are now ready to consider the possible modes of use 

of transformations of response. First, consider the possibility 

of choosing <p so that the normality of g . (p(z) will be Improved. 



: 
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The  leading  terms  In ske y,  where y = fCu-,,   u,-,   ...,  VL.)  are 

^ 7^1 + 2#(6sQ, }T:T^ 'a a ab'  a D 

X ya4 + 2*(6tab + 6,")^ 

where the T    are calculated for the u .  (Hopefully, but not 

certainly, the next term will not be Important.) 

In order to reduce the slse of this approximation to the 

skewness, we may proceed along two different paths. We may try to 

make the effects of some terms compensate others, or we may try to 

make as many individual terms small as we can. 

The difficulty in seeking reduction by compensation 

stems from our lack of knowledge of the a and 7 . Setting the 
SL a 

expression equal to zero, and solving for qp" yields 

^        /r   * 2   2 
n               'a a                ab a b 

(p    = — "  ♦■■"2—2  
62 TaTb 

2 
which is rather unmanageable if the x    and y    are either not pre- 

cisely known or may vary.  In some circumstances such reduction 

might be practical, but its general utility is no better than 

doubtful. 

: 

!'£«e«£»Mw(i«»swlw»w^,*•^* ™ ~ »^?™«p^^ 
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The difficulty In seeking reduction by reducing In- 

dividual terms is two-fold.  There are terms which remain uniffected, 

And not all affected terms vanish for the same value of qp".  The 

straightforward condition for eliminating a particular term is, 

however. 

ab ' 

Clearly, most attention should be given to large values of TaTb 
2  2 

If we weight by T T^- we find 

i,       ab a b (p 2 2 
Ta Tb 

We may not know the T'S well enough to use them at all accurately, 

but we may get a rough idea of a possibly useful qp" from this 

relation. 

Further arguments against the usefulness of attempts to 

improve normality can be based on the relative size of the y^  and 

the T .  If the former are much the larger, then cp" will be large, 
a 

and other terms in ske y may well be important.  If the Ta are 

large, the same may be said.  If all are small, and the 7a are 

smaller, then the skewness is small — why do we concern ourselves 

with it? 
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32, Simplifying formulas by ellinlnat.iiÄ terms 

Clearly we matt  choose which formula Is to be simplified 

In which way.  (Obviously we are going to try to simplify the 

variance formula — but it may be worthwhile to rationalize this 

choice.) The arguments of the last section speak strongly against 

simplifying the formulas for skewness or elongation. The second 

term in the formula for the average Involves values of 4  deriva- 

tives ffaabb]'  So our attention is directed to the variance, 

where the terms next after the first involve T2T? .  If we look for 
a b 

only the lowest order of differentiation we are led to 

V o 2  2 2 Z sab ^b 

and matters proceed as in the second approach to increased normality, 

2 2 
since larger values of TaTb deserve greater weight.  If, again, we 

can disregard variations in the sizes of the a ,  weighting by 
2 2 

£aSfti  which leads again to 

1 qp,. .   £ sagbsab 
 £—^— 

S «a ^b 

may be of use.  All this concerns only part of the coefficient of 
2 2 

T T^i however.' 

■ 
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If we concern oyrselves with the whole coefficient of 
£v d 

TaTb' we ^ace 

saab + sab + sabb 

which Is 

^aab *  ^b +  ^bb) + ^ab^" + ^V" " *"<*>") 

By choosing cp"' and cp" appropriately we can make this vanish for any 

two pairs (a,b) or for any two sets of equivalent pairs.  As the 

examples will show, this may sometimes be useful. 

33.  Power transformations 

The natural transformations to consider are often of the 

form 

y = A(z + c)p 

whence 

cp« = pA(z +c)p"1 , 

cp" = p(p-l) A(2o+c)
p-2, 

q>": = P(p-l)(p-2)A(Zo+c)
p-3, 
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and hhen we fix f* at 1, these yield 

cp" « (p-l)/(zo+c) 

«p"' = (p.l)(p-2)/(zo+c) 

2,)"' - ^"9" = [2(p-l)(p-2) - (p.l)2]/(zo+c)
2 

(p.l)(p.3)/(zo+c)' 

P"3 / ii\; 

whence p may be found from 

,v 

ft   tl 

qp   '   -   cp  (J) 

z„ + c as 0 

z      +  c   = llJä- 
o -q) 

and A as 

(V0)1^ 

. 
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It is worthy of remark that the case p » 0 corresponds 

to 

y = (z0
+c) log(z+c) 

with q,' = 1, cpM = .l/(2o+c), cp"» - 2/(zo+c)
2, and <plv  = .S/{zo+a)3, 

as might have been expected. 

Similarly, as p -♦ ± », the transform epproaches 

('-£^)(z.z ) 
T        Z +C 'v    O' 

TXT6 z
o+0 

where 

*■ - 1.  9" " (-5^) , 
o 

o "o 

Especially since the values of p, c and A may be quite 

sensitive to the values of cp" and cp"», it Is useful to have formu- 

las for qp v and (pv In terms of cp" and cp'.  Both for the general 

and limiting cases of power transformations, we have 

mmimmmmmmiä ■ ■ 
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<P1V - w* - <?%") -JC 
9 

and 

^v = (3cp"» - 2cp"(p") -^1 

so that the more complicated formulas connecting s's and t's 

become 

"t sabbb  = ^bbb  +  (2<P,i,-39"cp',)tab  -h  (2cp,"-<p"cD")-^Tri -  ^(V"^''^) 

8aabb  " ^abb + ^fcaab+2tab+tW  + W-'-V'V)^ 

+  (29" •-(?>") (-^X - 9") 

saaabb = ^aabb + 6*" ^b ^ab + 6((p '»W')t aab 

-f  (Sqp^-Scp^")^^  + 6(<p"»-<pV)t 
ab 

■f ^n [^((p"')2 - 22cp" VV + 9(cp,V,,)2]  tab 

■ ■■■'^■':   ■   M^:-  M..-..^1;-.^ ■■-vi, 
■ -■ ■■  1    ; 



We are really more concerned with formulas for the 

coefficients In the propagation formulas.  Coirblnatlon of the 

formulas Just given, and the use of suitable abbreviations, lead 

to the formulas already gjven In Table 5 (Section 18). 

If we seek to fix <pu  end (p"» by arranging for the 

individual coefficients of  T^ and T^ to both vanish, then, 

solving the simultaneous linear equations, we must take 

where 

: 

_,. ., 1 qab  qcd 
Zab      tcd 

"» . ^»„.f  tcdqab  tab qcd 
uab  ^cd 

2 
qab " taab + tab + tabb » 

2 
qcd = tccd ^ tcd + tcdd    ' 

.  ... «v;,-:   ^^;<.^/^^iv  ■ ■J.-Ii:yi*'.'<*:i-4 ?*■„■,; !-. -.« VH&«-i(->,  ,.,~..:..*,■-■.'.-,■■■ ■   ■ 

■ ■:... 
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_ = i 
s2i-l ' s21 " l" 

1 
62i-l,2i * WO 

with all other higher derivative values zero.  Hence 

^21-1 21 = ^'lf  while all other t's vanish. 

If we try to reduce Individual coefficients In the 

skewness, we have, when we equate ip" to -t , for various 

choices of (a,b) 

9*' % -0.1 (J occurrences) 

(j)' ^ 0.0 (2j(j-l) occurrences) 

which is clearly quite near zero. 

3^. Detailg for first ejcample 

After we had made the individual transformations, 

we had 

N 

and clearly we are likely to prefer to keep cp" = 0 unless 

J = 1. The weighted solution gives 

«'• 'v     1 
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For the r.ost plausible approach we find 

0 = 0.01 + 0.4(|)" + 2<p" '  - <p"<p"     f| tlmeS) 

0 = 0 + 0 + 2<P,,, " ^'V" (2J(J-1} times) 

and we can satisfy both if 

cp" » -aAo 

«p"' = 1/3200 

which corresponds to a power transformation with p = 3, 

20 + c « -80, A - l/(3(-80)2h namely to 

y - (2-10.1-80)3 

* 19,200 

for which r  '  l,q)n-.i/40, cp"f,= 1/3200, and q)iv = (pv - .. . qp •■...» 0. 

The resulting values of sab, etc. are, when a and b 

are paired (that is when (a,b) « (21-1, 2i) or (2i,2i-l)), 

smim9m»*m>'*4^-}&f.y,',7>,.,:.& ,-..,- 
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sab    «   c,i - 0.025 * C.v Jj 

3aab    *    sabb *-■•-.•••      •      '-      -    -;—-   -    -   .u028l + 

g 3 sabbb    =    saaab "   %0Ö - jm^0'1^  + (4o}3200 

1 
(-40)- 

-  0.00014' 

saabb    "    -0-025(2) (0.1 )2  +  (^  -^(o.oi)   -   (4o)|^ | 

+ 

13200 

1 

(-40)J 

=    -0.00056+ 

saaabb    saabbb "* 6^3200 ' I^öÖ^0-1) + ((4o)(3200) 

■H—^ICO.I) 1   + 1 _ . _3 
(40)^        (3200)^  (3200) (40)2  (40r 

+ 0.00009 
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These lead to the following coefficients (still to 5 decimals) 

f 3aabb " - 0^0014+, ^ saaabb - + 0.00001 + 

2 
aab   ab    abb 

k  3aabb + sabsaab + I saaab - -0.00054 

6sab " 0'45 3a0>>
2 - .01688' ab 

3saab +23abb - -0'°^' 

and hence to the formulas 

ave y - -80 

-o.oooai* 2 T^.^ 

2^ 2 +0.00001 Z(,21.lT21,1+r8l)T2i_a2 

+ terms of order >T , 

var y « 2T„ 
a 

2_    2 ■0.00052 2{.2i_1T21.1  + y^21)T21Jr2x 

+ terms of order >T  , 

"• 
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oke y • Sr.t^^ 
3 a. 

+ 0.45 Z T^.,%,2 

2  2 + 0.01688- sCCr^^-DT^^tCra-i)^]^^^^] 

2  2 
- 0.01265" S^l-l^l-l + ^lT2i)T21-l T21 

+ terms of order > T , 

elo y » l(ra-3)Ta
4 

-*- tenns of order > T 

These formulas are to be compared with the corres- 

ponding formulas before transformation, which are 

ave s = lOj + no other terms, 

2 
var z = 2T a 

+ o.oi ^ A2i
2 

+ no other tenns. 
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'a a 

+  ü-6 ZT2i-lSl2 

+ 0.03^(^,-1)^, + iy21-ih2ih21^r 2      2 
21 

+ terms of order > T , 

elo z - 2(ra-3)Ta
4 

+ terms of order > T . 

These two sets of formulas are to be assessed In view of the 

fact that Ta = 2 V 
so that T'S as large as 1.0 are possible 

but unlikely.  Values between 0.5 and 0.05 are more plausible. 

Thus 

- o.ooo5 (^.^ + r^)^.^? 

is not likely to be more than a twentieth the magnitude of 
2   P 

+0.01T21_1 T2i and might be considerably less. 

In general terms, the transformation has 

(1) added some minor, almost surely negligible, terms 

to the formula for the average. 

■■ -■■' ■ 
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A A - f 

(11) reduced the most important correction term In the 

variance from perhaps 1^ cf the leading term to per- 

haps 0.05^ -- fron almost certain negligibility to 

utter unimportance. 

(Hi) modified the correction terms in the skewness, and 

has had some slight tendency to reduction of coef- 

riclen;s. 

Overall, tr-insforraatlon has done what It was asked to do - it 

has eliminated the most important correction term In the formula 

for the variance.  However, in this Instance, the correction 

term In the variance was not Important enough to warrant much 
ef'f nr»+- 

35- A Salutary Example 

In searching for an example showing how much trans- 

formation of the response could matter if we had picked the 

wrong terms of response initially, we may well ask what would 

have happened it we had started with a response proportional 

to the cube of the delay time of the filter.  We can eaally 

calculate the reduced derivative values by taking 

V as —£-. _. 

soor 
when 9' = i, jp" = i/5^ ^.M . l/30J2^ ^iv ^ ^v ^ ^ _ 

0. 

The sab etc , which now do not refer to well chosen 

terms of response, become 

■v" vj:.;. ;y ;■.■?.■& ™ "p'-,„■ s.,v\ " -"■^;, ."V''- 
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3ab « 0.1   ♦ 0.2/, 

Jaat  = 0.02/J   + 0.02/j2  -  O.Q4/j2  « 0.02/j   -  0.02/j2 

3abbb  =   (O.OVj2  -  0.12/J2)0.1   -  4(O.004/j3  ., 3(0.006/j3) 

»  -  0..0O8/J2 + 0.008/J3 

5aabb =   (0-2/j}(0.02)   »-  {4(0.02/j2)   - 3(0.O4/j2))   (o.l) 

- 2(0.004/j3)   +   (0.008/J3} 

= 0.004/J  -  0.004/J2 

The  leading and first correction terms  in the variance 
become 

var y = 2T   - 
3. 

+ (0.01  + 0.06/J)  s r       * ^ 

For very small J (namely J = i), beginning with the cube of the 

delay time as the response mi^ht make the first correction term 

■ ■■■''-J**--.--' , vU&Vc 
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relevant, but for larger J (namely J > 2) the first correction 

Is small enough to be uniicportant, even when thia very poor 

choice of terms is made. 

36.  Details for second example 

After we had made the Individual transformations, 

we had 

i 

^C 
_y  a&-l 

ß^   a-3 
1   1 
a  a3 

tAB = tBC 
5   a+1 

2&*      ad 
.1^ 

a 

tABC 
_ y _ (a+1 

2ß3    a4 
— ^  5" 

a 

s 
i 

with all other t's vanishing. 

If we try ^o reduce individual coefficients in the 

skewness, we have 

_lt -v  1    1 
■05  -v — - —^- 

«3 or 
(once) 

„»i^l   1 
T    a        2 a 

(twice) 

and the choice cp" « -l/a seems likely to be a helpful compromise 

The choice p * 0, c = 0, since zo = a,.will do this.  Thus 

y » a log z 

.;,;(:■:.■ 
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Is to fee eonsl.de«  .     Th-v w-. l,;:i.ed solution differs from 

<|!    « -l/a by a small,   presumably negligible result.     If we 

try to delete mixed correction terms  in the variance,   we find 

{ ) ( ) 
i~ -f -4)     + 4   (i +  -iV'   + 2^"'   -cp'^"  w  0     (twice) 
[ a   ) (a      a'") 

| - ~i      + 4    | - 4)9"  + Sqj'"  -cp-q)" •- 0     (once) 
( a   ; ( aJ) 

which leads  co 

m" -     !     1^1 
9 ""s"^+^ 

cp —  p -  21  H +  —nr +   f: 
dac      32a  32aH    l6ap  32a 

We mi^ht reasonably hope to obtain good results with 

9* -  -l/2a and qp" = 5//8a whle'r correspond to a power crans- 

formation with p - l/S, z0 + 3 ^ ^0/3, c = a/3, and 

A = 3(i+a/3)2//3.  Hence 

y = 31'/3(4a)2/3 (z + a/3)i/3 

with cp' = i, cp" - ^i , cp"' = 5/öa
2 ^ (piv , . 5/4Q3 is lridicated 

.•^.■if-'^S.-V- ■ 
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If we write t 
; • — + A, then we have from Table 5 

and the vanlahlne of all fa with 3 or more subscripts which 
appear therein 

4a' 

3 
LL  ■ 25 (E + ä)   + (~T" + r%i ii + Ai öa' 4a 

va 

- 2a -X (-4 1 ^ T "* -V) oac Sa^  4a<!:: 

4c?    a 

S   u- -. (-i4r) ri + A1!2   o,wl06     6     1 
ba* T 64a   32a'      lOa 

(i + AJ + 4a
2 (-162 + _18 3  , 

512aD  256a0   128a0 ' 

a   aa-3    4a' -A 
laab * sab  + sabb '  (| + A)2 - |  (|i + A)  +    1 „ A2 

a 

2" 3aabb + 3ab aaabj 
1   /I 11 

ba^      24a'f      a 

3    aaa ab/ 

64a        64a^ 

48aJ,      3a 
-~ A   -  i A2 

2 a 
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; 
'    2a      2a       - 'ab *  ^a 

sab2 = ^ + 1^ + ^ 

3sQoK  + i s  ^^  = . 5_  fi + A)  +    27_ aab      2    abb 4a   la ^ ^^  +    . p 
loa 16?     ^ 

A 

When we put A • l/a2  (for AB or BC)  and  -  l/a3   (for AC)  we  obtain 

ave y = y. 

■Ifo-      4oP{   \  ^ + ^flli?  - ifK2- 2 .T.    T, 

8 -J- . 
^Sa"21" " ia5 "l^    (7A

T
A
3T

B
2
 

+ W^A2 + ^c') 

+ ^C
T

C
3T

B
2
) 

8 
^+i^ + ^(rATA+ VcWV 

+ terms of order > T 

var y = TA
2
 + ./ + Tc2 

+ ^(xft
2

T  2 2     2.        l 2     2 
IPTÄ  TB    + TB  TC   ^   + ~6  TA  TC a a 

^+ ^"+ i 'VAVWW2^)2^.^^ 

^"^-^i (VA + VO)TA%2 

+ terms  of order > T 

B:Ä*..i--*:„a 

. :;••    :.-       - ■^^■■-., ■■•..■.■■   . ; ;.,'■.,■,.■,.,;.■,■, 
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s>ce y  * 
0 c 

2     2 
A  TC 

fl + 6   J     2rT  2 2.        h 6) 

^+fi+^ir^A^)-Av^B-i)TB3<.A 
2       2, 

3.  2 H7C-1)VTB 

+    *-^ + ^ a 
3, 2 3. 2 

^A-^V^C   -^C-^V^A 

+ rrt*- ^J
(
VASVB

3
(
T

A
2
^C

2
)^C

T
C
3
^) 

3    2^ ^  3,     2_  2 

v    loa        4a   J 

+ terms of order > T 6 

elo y - 2(ra-3)Ta 

+ terms of order > T . 

If we put a = 10, then the variance formula becomes, 

to five decimals, 

■ ;  ■ , ■■. ■ ;■.■.■■.. ■■.■ . 
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2 i yar y • ** ** m      _ ^ 

+ c-oooic TB (TA * r/) 

- 0. 00 

3. 2 _. , 2..3 0.00002  (.ATA^^ + yctk^) 

+  . . . 

and clearly the correction terms are all very negligible. 

Before transformatlo!., we had 

t    = f        S   _ 1    1     Aii 
^B  ^C " ^ " E + -2 = 0-1^ 2ß       a 

p      a-^ 

and the variance formula was 

^ - ^ 4- T 
2      2 

A + TB + TC 
var z ~ T," + T^ + T 

+ 0.01210 TR
2
 (TA

2
 + TC)

2 

+ 0.00980 rA
2Tc

2 

Thus we have reduced the first correction term by a factor of 

100 or so, although it was already rather small. 

•«««»«»«»«»iüÄKj,»,     •  1 

■^ ,   ,     -. 
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The above rtauitd w#re eased m the  plausible- 

seeming assumption that the leading terns in f* and f1" auf£ice 

to select an adequate transformation.  It will prove enlighten- 

ing to inquire into what the "best" transformation proves to be for 

JL  = 10. We find, using all terns, ff  * -.05225V = .004 870 03125 

1 - D - -002 730 062 5 . , p^-H 

zo + c = 24.416 

A = 
.4^^51.2757 
__2__„_= -213.705 

y = -213.705 (2+14.4i6)"-2757 

This transformation is clearly quite different in appearance 

from the previous one, although its derivative values are quite 

similarj, namely 

cp 

9 

9 

ii 

iv 

Approximate 

-,0500 

.00625 

-.00125 

.00034 

Exact 

-.05225 

.00487 

-.OOO65 

.00011 

- 

° 

- SB^"^»^^ 
■■■■ -  ■ ■   - ■■■'■■■-    ■   i ^ v:-, ■.■,.-.■.;..■... 

:■■.:•■.■  .■-:> -■ :r'    :.    ,., ■::; ■■:.•  ■'■■.:i:i-,:,   :.,,..,    ,,y  .... 
1 .• ■ ' ■      ■■■■. ■ .. . , 

5ösf*ivf:3|||a 
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36« The  I» notation. 

We have used at various points the very convenient, but 

not standard, 1« notation. With its convenience there comes a 

need for some care In Its use. At this point, after recalling Its 

definition, some examples will be provided.  In general, £• Implies 

the summation of all the different terms of the form written after 

It which can be obtained without Identifying subscripts.  In this, 

its usage corresponds to our usual practice In v/rltlng down simple 

formulas.  We write 

(x1+x2)  = x1 4x2 +2x^2 

but 

(x1+x2)(y1+y2) = x1y1+x2y2+x1y2+x2y:L 

Similarly we now write 

(2xJ2 = Zx, '-+22 xx, v a'     a     ab 

but 

(Sxa)Uyb) = 2xaya+Z*xayb. 

# ♦ 
Note the 2Z in one formula and the Z without the two In the 

other.  This exactly corresponds to our writing 2x1x.^ in (x,+Xp) 

and l(x1y2+x2y1) In (x1, x2)(y1+ y2). 

A3 a consequence we must be careful of what happens 

when we specialize variables, break up terms, or multiply expres- 
'■ » »    ■ ■ 

sions.  Thus If we put yt)=3Cb in 2 x y, the answer is 22 x x, and 
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not merely a D As another example, conrider the folio win* 

i:*x vh= 2:*(xayK-xQyQ+xQyQ) Vfc a^b a^a a* 

- Z ^a^b" ^ + %Vm} 

Z xa^yb"yaJ + ^n*1^ ^a^ 

where we find n-1 times 2xoy0 = ^Tx y rather than merely 2 x y 
a.   a a.   a ' H a" a 

(Here n = rhe number of values taken on by a.)  Finally, consider 

# 2 \2 (2 xa xb) , which we now write 

* 2 (Z x/xh)(Z x/xj = Z xa
4x V 4.. 2 

c Ad a b 

42 Z x^x^ 

+2 Z Wxd 

#  ?  ^ 
+2 2 xa xb xd 

r-  *  2 2 2 +6 Z xQ x, x,, a b c 
* 2   2 + Z xa xbxc xd . 

; I 
i 

It would not be too difficult to miss some of these numerical 

coefficients. 

All these needs for care considered, however, the ad- 
« 

vantages of the Z notation seem to outweigh the disadvantages. 

39« Glossary of statistical and other special terms used. 

average Arithmetic mean, especially of a probability distribu- 

tion,  (within range of standard usage.) 

average point The situation in which each individual variable 

takes on Its average value.  (special) 

i 
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I 

cocumulan.t    A soainvarlant measure of mur^i mmm i«e«4&ure oi  mutual variation.    Defini- 

Mona of -he first  thre* and  atatement of their 

properties   given in Section 19.     (new,   noc yet 

standard) 

mmmm.    **  fourth coolant - a function of four ar^u- 

r.ents.  (See Section 19 for definition and proper- 
ties,  (new, nüt yet standard) 

COrrelated Not saving zero covariance.  (atandard) 

^Mwnesa ^ third cocuraul.1t - a function of three argu- 

ment.. See Section 19 for definition and proper- 

ties.  (neW) not yet standard) 

covariance Le average product or deviations Tro. means -- the 

second cocumulant.  | , Section 19 for definition 

and properties,  (standard) 

^m^>JLier^rlml    A semlnvarlant polynomlal in the mo_ 

menu  of a distribution; a coefficient 

In the expansion of the logarithm of 

the moment generating function in terms 
k 

of  f /kl. The first cumulants are 

average, variance, skewneos and elon- 

gation,  (standard) 

^^L~l^^      ^^ expressing a noraai dis_ 

trlbutlon in terms of the total 

probability of values less than 

any given value,  (standard) 
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^^   A entity with a probability distribution .hose ave^  .  t /,+)ei„,    -v «^*wn vnofie avers^e ts zero. 

2££iZaHl£_Z2iH£   A value oC a derivative ut a m*mM  , ^^^^ ■ ut a P^assigned point. 
(not yet widely used) 

elongation    The fourth cumulant,  usually a measure ^ i i   uöuaj.xy a measure of longtailedness. 
See also section k.       (new) 

when knowledge of the value* n-p ™~ ~i -Ö wae value of one gives no information 

about the probability distribution of the other, 
(standard) 

SSEHt   A. average value of .o.e power of tho entity oon=eraea 

See also Sections 2 to 1*.     (standard) 

^^mri^ion   A particularly sl^e shape of distribution of probability 

which can be characterized m .any ways  ;    as the distribution 

of the sum of an  indefinitely large n^nber of Independent 

quantities,  as- a distribution all of whose higher cumulants 

vanish, as an example of the nonnal "bell-shaped curve" 

Also  "Gaussian" or  "Maxwelllon".       (standard) 

P      lal effeCt-   ^ effeCt 0f -^ - ^vidual variable, while holding 
all the others constant,     (not yet  standard) 

.relative  derivative values    Ratios of higher derivative ^ues to the 

corresponding products of first derivative values. 
(not yet standard) 

...-'■^.i,. „-v:!>>*.;■„■- ... 
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relative momgnta Ratios of higher mosients about the sean to that 

power of the standard deviation which nake« the 

result dlmenslonlejs.  (not infrequent) 

response    A variable whose value is regarded as caused by the 

values of another variable (stimulus) or other variables 

(individual variables, stimuli).  (standard) 

semlnvarlant  (see cumulant) 

skewness The third cumulant (= the third of moment about the mean), 

usually a measure of asymmetry in long-tailedness. See 

also Section 4.  (marginal) 

standard measure A distribution Is expressed in standard measure 

when its average is zero and its variance unity, 

(standard) 

standardized deviate A quantity with average zero and unit vari- 

ance,  (standard) 

terms The type of unit in which a variable is expressed to be con- 

trasted with "scale" which indicates the size of the unit 

used.  (The variable "temperature" for exajnple, can be ex- 

pressed in terms of degrees, log degrees, reciprocal de- 

crees, etc.)  (new--no clear pattern of usage) 

variance The root-mean-square deviation from the average; the 

second cumulant.  See also Section 2.  (standard) 

40. Glossary of abbreviations. 

"ave" Average value of expression following.  (Used by some 

authors.) 

"coe(i,-,-,-)"  coelongation of four expressions appearing as 

arguments (not yet standard) 

a 
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t» colc(-#-^-l  eoskewneSvS ot   i. .   ■   vx...:---'. . ■..■ i. .. .ii^ng as argument 

(not yet  standard) 

"covi',-}"    covariance of two expressions appearing as arguments 

(standard) 

"elo" elongation (fourth cumulant) of expression following. 

(not yet standard) 

"ske" skewness (third cumulanr) of expression following,  (not 

yet standard) 

"var" variance (second cumulant) of expression following. 

(standard) 

41. Notation used here for response functions. 

The main topic of this memorandum deals with the behavior 

of a response as a function of individual variables. The following 

notations are used consistently 

(a) No special assumptions; 

z = h(w1,w2,, . . .,wk) 

(b) Higher unmixed derivatives all vanish: 

z = g(v1^
v2' • • "vk^ 

(c) Transformed response, with Individual variables such thac 

all higher unmixed derivatives all vanish: 

y - f (u1,u2, . . .r.uk) 

."ä. 

ii 
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In addition, various other notations are used transiently, in- 

cluding 

y ' • \ 3CT $ ääJI ■••■», Xj^ /, 

2 . Ä(l)/V (1) v (1) 
k      '* 

m 

z = h(wA,wB/Kc), 

with restrictions stated in context. 

42.  Index of notations used "on the line" 

The index to symbols which follows is divided into 

three sections:  first, in this section, symbols used "on the 

line", next, in the next section, symobls used as subscripts, 

and finally, in section 44, symbols used as exponents on other 

superscripts. Uses of limited extent are specified as inciden- 

tal. 

Iteage "on the line" 

3-1,3-2* ' • • }\    Incidental constants (abstract only.) 

A A choosable constant (sections 16, 33, 37) 

b An incidental constant (section 9 only) 

c An Incidental constant (section 9 only), a choosable constant 

(section 16, 33, 37) 

C,C2,C21,Ca, etc.  Capacitance of element Indicated by subscript 

(in delay line example),  (section lOff) 

_ _ _ _ _ _ 
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D Abbreviation for f * • ».|p'f
f

,^ (Bmtion 1$ omy) 

£ Abbreviation for #%», (section 11 only) 

f(-,-#,..,-) A function of k argumenta.  (sections kl,  29, 15ff) 

fa>fbc'f3'f112' etc-  Values of the Indicated derivatives of 

f(-*-#...#-) at the average point -- i.e., 

with each argument of f(-,-,...,-) at its 

average value.  (sections 15ff) 

g(-*-,...,-) A function of k arguments,  (sections 4l, 29, 

various) 

ga'sbc's3,gll2' etc, Derivative values of g(-,-,...,-) at the 

average point (cp.fa, etc. above)(sections 

7ff) 

.(1) 
S  {-*~f ' • *,-)     A specific incidental function of k arguments. 

(section 7 only) 

GJ,Ga Relative fifth moments about the average,  (sections 2,3,5 

and 21-23). 

h(-,-,...,-) A function of k arguments,  (section 4l) 29, various) 

ha'hbc>h3'h112' et0t    Privative values of h(-,-,...,-) at the 

average point (cp.fa,..., etc. above), 

(sections 3ff) 

H(-,-,-)  Attenuation as function of WA,WB,WC (section 27 only) 

j  Number of sections of delay line (sections 10, 11, 24ffy. 

k Number of arguments in response functions = number of indi- 

vidual variables treated as affecting response,  (sections 

41, various) 

v^mmmti ^m-m^- 

. ,-' 
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^'^f^i-l'^a*  ete' Ißductanc© of el^ent indicated by subscript; 

(In delay line example* (seitior^  10, 11, 

24ff.) 

p See exponent in section 44. 

p(2)d2 Generic probability density of z.  (section 2 only) 

qa Incidental deviation of w from its average,  (section 23 

only) 

qab, etc. Incidental expressions (section 33 only) 

RA,RB,RC Values of resistance in attenuator example (sections 

2, 27ff) 

sab,saab, etc. Relative derivative values of t,   e.g. a , = 

fal/fafb-  (sectlons 15ff,, 33ff) 

tab,faabJ etc. Relative derivative values of g, e.g. t , = 

S^v/s^Sh-  (section 8ff) ab s D 

u.jy^o'" ' ,xl\c    A set of individual (= component) variables). 

(sections 4l, 29, 15ff) 

ua,ub, ... General examples of u1,u2,.....Juk.  (various) 

v A chance quantity (Part V only) 

v^Vg, .,.,vk A set of individual (= component) variables (sections 

41, 29, 6ff) 

(1) « CD , . . .,v. (1) An incidental set of particular individual 

(= component) variables (section 7 only) 

va(ua) A change in terms of the ath Individual variable (sections 

15, 29, 30) 

^ 

: 
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vlQ*wSö* "*tMk    Inci4e3flC'ai notation for the average values cf 
viJtV'2-*' ••*vk'    (section 9 o*sly) 

vll*v21f'' 'iVkl    I^cicle"tai notation for the coordinates of the 

new average point (section 9 only). 

v2i ,'v2i Measures ofyTg,, , andv/C21 respectively (sections 

25, 26 with differing usage.) 

v jV  ,v   .v  , etc.  Successive derivative values of v„(u^) aa'aa a'a' 

at the average point,  (sections 30ff.) 

VA,VB'VC Measures of deviation of input shunt conductance, series 

resistance and output .shunt conductance, respectively, 

from their nominal values (in the attenuator example) 

(sections 12, 28) 

VA,VB'VC other similar measures (section 28 only) 

w^w,;,, ,vr,  A set of k individual (= component) variables 

(sections 41, 29, various) 

w.,Wp,,wc Measures of deviation of element resistances from nominal 

values (in attenuator example)(sections 12, 27) 

WA,WB,WC Similar measures (section 27 only) 

x A chance quantity (Part V only) 

x1,x0,...,x,  A set of k individual (= component) variables. 

(sections 41, various.) 

y A response variable (sections 41, various)  A chance quantity 

(Part V only). 

YÄ,YC Conductances of shunt elements (in attenuator example). 

(sections 12, 28). 

- 
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2 A mmponme  variable, (««etioiii 41 ««^««^^ . ^ 

(Part V only} 

a Hominal atteiiyatla^ (m the attestor ^MmpU)   (Sections 12, 

27, 36, 37) 

ß1,ß2 Dlmensionless functiona of higher moments.  (Standard, 

Sections 4, 14) 

ß,r,5 Specific rational functions of a (m the attenuator example^ 

(sections 12, 27, 28, 36). 

7,V V etc- Relative third moments (m the attenuator example 

this meaning applies only to y>3 with subscripts.) 

(Moderately used, section 2ff.) 

(       7vy2    Dimensionless functions of higher cumulants (standard. 

Sections 4, 13.) 

r,ra Relative fourth moments.  (Transient, Section 2ff.) 

A Deviation of tab from 1/a (incidental),  (section 26 only) 

5,5* "small" deviations from nominal specifying upper tolerances 

(sections 1, 3, 4) 

B,E* "small" deviations from nominal specifying lower tolerances     | 

(section 1) 

^l-l'^i ^efficients of variation of V/L^~J- and yü"-T 

respectively (m delay line example).  (sections 11,       | 

26) 

^ 1th cumulant = 1th semlnvarlant.  (standard, section 4 only) 

^ 1th moment about the average [about the mean],  (standard, .. 

sections 2, 4) 
1 

M-i  1th moment about the origin (standard, section 2 only) 

mm mmmi -■-:.. ^mts > ,  . .     ..  >. ^ . _ 
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I section 9 only) 

fH    P^ctlon ^mmming a trmsfomation of response faectian 
15, 16, ^ff.) 

Äl Äii ill iv 
<P ^ ,V    *,flv, etc. 

Successive derivative values of q)(.} at the 

new average point (sections 15, 16, 30ff.) 

fa(wa) incidental change in terms of the ath individual variable. 

(section 7 only) 

2* Signof restricted summation.  (Discussed in section 38) 

a,V etc.  Standard deviation = square root of variance = root- 

mean-square deviation  (standard, section 2ff) 

2 Sign of unrestricted sununation.  (standard, various) 

Ta RMS value of Individual contribution to response = f a - 

fa(var xa)
1/2#  (Sectlon 8ffj 

^—Igdex of notations used as subscripts 

a Generic subscript, usually ranging from 1 to k. 

A Identifies input shunt element in attenuator example 

(sections 12, 27ff) 

b Like a, but ordinarily distinct,  (various) 

B Identifies series element in attenuator example 

(sections 12, 27ff) 

c Like a, but ordinarily distinct from both a and b. 

(various) 

C, Identifies output ehunt element In the attenuator example. 

(sections 12, 27rr) 

1 Index ranging from 1 to J. (sections 10, n, 24ff) 

% 



0 Corresponding to average point,  (various) 

o Corresponding to average point,  (abstract 

44.  Index of notation used as superscripts. 

i,j Incidental exponents,  (section 21 only) 

m,n Incidental exponents,  (section 21 only) 

p Exponent in power transformation,  (sections 16, 33, 37) 

p,q Incidental exponents,  (section 21 only) 


